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Preface

This book is intended as a text for a course in analysis, at the senior or
first-year graduate level.

A year-long course in real analysis is an essential part of the preparation
of any potential mathematician. For the first half of such a course, there
is substantial agreement as to what the syllabus should be. Standard topics
include: sequence and series, the topology of metric spaces, and the derivative
and the Riemannian integral for functions of a single variable. There are a
number of excellent texts for such a course, including books by Apostol [A],
Rudin [Ru], Goldberg [Go], and Royden [Ro], among others.

There is no such universal agreement as to what the syllabus of the second
half of such a course should be. Part of the problem is that there are simply
too many topics that belong in such a course for one to be able to treat them
all within the confines of a single semester, at more than a superficial level.

At M.LT., we have dealt with the problem by offering two independent
second-term courses in analysis. One of these deals with the derivative and
the Riemannian integral for functions of several variables, followed by a treat-
ment of differential forms and a proof of Stokes’ theorem for manifolds in
euclidean space. The present book has resulted from my years of teaching
this course, The other deals with the Lebesque integral in euclidean space
and its applications to Fourier analysis.

Prequisites

As indicated, we assume the reader has completed a one-term course in
analysis that included a study of metric spaces and of functions of a single
variable. We also assume the reader has some background in linear algebra,
including vector spaces and linear transformations, matrix algebra, and de-
terminants.

The first chapter of the book is devoted to reviewing the basic results from
linear algebra and analysis that we shall need. Results that are truly basic are
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stated without proof, but proofs are provided for those that are sometimes
omitted in a first course. The student may determine from a perusal of this
chapter whether his or her background is sufficient for the rest of the book.
How much time the instructor will wish to spend on this chapter will
depend on the experience and preparation of the students. I usually assign
Sections 1 and 3 as reading material, and discuss the remainder in class.

How the book is organized

The main part of the book falls into two parts. The first, consisting of
Chapter 2 through 4, covers material that is fairly standard: derivatives, the
inverse function theorem, the Riemann integral, and the change of variables
theorem for multiple integrals. The second part of the book is a bit more
sophisticated. It introduces manifolds and differential forms in R™, providing
the framework for proofs of the n-dimensional version of Stokes’ theorem and
of the Poincaré lemma.

A final chapter is devoted to a discussion of abstract manifolds; it is
intended as a transition to more advanced texts on the subject.

The dependence among the chapters of the book is expressed in the fol-
lowing diagram:

Chapter 1  The Algebra and Topology of R”

Chapter 2  Differentiation

\
Chapter 3  Integration

\
Chapter 4  Change of Variables

\
Chapter 5  Manifolds

Chapter 6 Differential Forms
\
Chapter 7  Stokes’ Theorem

Chapter 8 Closed Forms and Exact Forms

]
Chapter 9  Epilogue—Life Outside R
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Certain sections of the books are marked with an asterisk; these sections
may be omitted without loss of continuity. Similarly, certain theorems that
may be omitted are marked with asterisks. When I use the book in our
undergraduate analysis sequence, I usually omit Chapter 8, and assign Chap-
ter 9 as reading. With graduate students, it should be possible to cover the
entire book.

At the end of each section is a set of exercises. Some are computational in
nature; students find it illuminating to know that one can compute the volume
of a five-dimensional ball, even if the practical applications are limited! Other
exercises are theoretical in nature, requiring that the student analyze carefully
the theorems and proofs of the preceding section. The more difficult exercises
are marked with asterisks, but none is unreasonably hard.
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The Algebra and Topology of R”

§1. REVIEW OF LINEAR ALGEBRA

Vector spaces

Suppose one is given a set V of objects, called vectors. And suppose
there is given an operation called vector addition, such that the sum of the
vectors x and y is a vector denoted x +y. Finally, suppose there is given an
operation called scalar multiplication, such that the product of the scalar
(i-e., real number) ¢ and the vector x is a vector denoted cx.

The set V, together with these two operations, is called a vector space
(or linear space) if the following properties hold for all vectors x, y, z and
all scalars ¢, d:

() x+y=y+x

2 x+(y+z)=(x+y)+z.

(3) There is a unique vector 0 such that x 4+ 0 = x for all x.
4) x+(-1)x=0.
(5) Ix=x.
(6) c(dx) = (cd)x.
(M) (c+ d)x = cx + dx.
(8) c(x+y) =cx+cy.
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One example of a vector space is the set R* of all n-tuples of real numbers,
with component-wise addition and multiplication by scalars. That is, if x =

(z1,..-,Zn) and y = (¥1,-..,Yn), then

x+y=(:1:1 +y1"",xn+yﬂ)7
cx = (¢czy,...,CTn).

The vector space properties are easy to check.

If V is a vector space, then a subset W of V is called a linear subspace
(or simply, a subspace) of V' if for every pair x,y of elements of W and every
scalar ¢, the vectors x+y and cx belong to W. In this case, W itself satisfies
properties (1)—(8) if we use the operations that W inherits from V/ so that
W is a vector space in its own right.

In the first part of this book, R" and its subspaces are the only vector
spaces with which we shall be concerned. In later chapters we shall deal with
more general vector spaces.

Let V be a vector space. A set aj,...,a, of vectors in V is said to
span V if to each x in V, there corresponds at least one m-tuple of scalars
Ci,...,Cy, such that

X =cja; + -+ Cram,.

In this case, we say that x can be written as a linear combination of the
vectors aj,...,an,.

The set aj,...,a,, of vectors is said to be independent if to each x in
V there corresponds at most one m-tuple of scalars ¢i,...,Cm such that

X =ca; + -+ Chany.

Equivalently, {ai,...,am} is independent if to the zero vector O there corre-
sponds only one m-tuple of scalars dy,...,dn such that

0:d131+"'+dmam,

namely the scalars d; = dy = --- = d,,, = 0.

If the set of vectors a;,...,a,; both spans V' and is independent, it is
said to be a basis for V.

One has the following result:

Theorem 1.1.  Suppose V has a basis consisting of m vectors.
Then any set of vectors that spans V has at least m vectors, and any set
of vectors of V that is independent has at most m vectors. In particular,
any basis for V has ezactly m vectors. [

If V has a basis consisting of m vectors, we say that m is the dimension
of V. We make the convention that the vector space consisting of the zero
vector alone has dimension zero.
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It is easy to see that R™ has dimension n. (Surprise!) The following set
of vectors is called the standard basis for R™:

€1 = (1>0707---70)7
e; = (0,1,0,...,0),

e, =(0,0,0,...,1).

The vector space R" has many other bases, but any basis for R must consist
of precisely n vectors.

One can extend the definitions of spanning, independence, and basis to
allow for infinite sets of vectors; then it is possible for a vector space to have
an infinite basis. {See the exercises.) However, we shall not be concerned with
this situation.

Because R™ has a finite basis, so does every subspace of R™. This fact is
a consequence of the following theorem:

Theorem 1.2. Let V be a vector space of dimension m. If W is
a linear subspace of V (different from V), then W has dimension less
than m. Furthermore, any basts ay,...,a; for W may be ertended to a
basis ay,...,ax, agy1,...,a, for V. 0O

Inner products

If V is a vector space, an inner product on V is a function assigning,
to each pair x, y of vectors of V', a real number denoted (x,y), such that the
following properties hold for all x, y, z in V and all scalars c:

(1) (x,5) = (v, %)

(2) (x+y,2) = {(x,z) + {y, z).

(3) (Cx>Y> = c(x’Y) = (xaCY)-

(4) (x,x) > 0if x £0.
A vector space V together with an inner product on V is called an inner
product space.

A given vector space may have many different inner products. One par-

ticularly useful inner product on R" is defined as follows: If x = (z1,...,2,)
and y = (¥1,--.,¥Yn), We define

(x,y) =Z1Y + -+ TnlYn-

The properties of an inner product are easy to verify. This is the inner prod-
uct we shall commonly use in R". It is sometimes called the dot product;
we denote it by (x,y) rather than x -y to avoid confusion with the matrix
product, which we shall define shortly.



The Algebra and Topology of R” Chapter 1

If V is an inner product space, one defines the length (or norm) of a
vector of V by the equation

llxll = (x, )2

The norm function has the following properties:
(1) |jx|| > 0 if x # 0.
(2) llexll = el Il
(3) [Ix+ yll < Il + Iyl
The third of these properties is the only one whose proof requires some work;

it is called the triangle inequality. (See the exercises.) An equivalent form
of this inequality, which we shall frequently find useful, is the inequality

(3) llx = yll = Il = llyli:

Any function from V to the reals R that satisfies properties (1)-(3) just
listed is called a norm on V. The length function derived from an inner
product is one example of a norm, but there are other norms that are not
derived from inner products. On R”, for example, one has not only the familiar
norm derived from the dot product, which is called the euclidean norm, but
one has also the sup norm, which is defined by the equation

x| = max{[z1],.., [Zal}-

The sup norm is often more convenient to use than the euclidean norm. We
note that these two norms on R” satisfy the inequalities

x| < [Ix|| < v/nlx].

Matrices

A matrix A is a rectangular array of numbers. The general number
appearing in the array is called an entry of A. If the array has n rows and m
columns, we say that A has size n by m, or that A is “an n by m matrix.”
We usually denote the entry of A appearing in the i*" row and 78 column by
a;j; we call ¢ the row index and 7 the column index of this entry.

If A and B are matrices of size n by m, with general entries a;; and b;;,
respectively, we define A + B to be the n by m matrix whose general entry
is a;j + bij, and we define cA to be the m by m matrix whose general entry
is ca;j. With these operations, the set of all n by m matrices is a vector
space; the eight vector space properties are easy to verify. This fact is hardly
surprising, for an n by m matrix is very much like an nm-tuple; the only
difference is that the numbers are written in a rectangular array instead of a
linear array.
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The set of matrices has, however, an additional operation, called matrix
multiplication. If A is a matrix of size n by m, and if B is a matrix of size
m by p, then the product A - B is defined to be the matrix C of size n by
p whose general entry c;; is given by the equation

m
Ci; = E aikbkj-
k=1

This product operation satisfies the following properties, which are straight-
forward to verify:

() A-(B-C)=(A-B)-C.

2) A-(B+C)=A-B+A-C.

8) (A+B)-C=A-C+B-C.

(4) (cA)-B=c(A-B)= A-(cB).

(5) For each k, there is a k by k matrix I such that if A is any n by m

matrix,

I, A=A and A T,=A.

In each of these statements, we assume that the matrices involved are of
appropriate sizes, so that the indicated operations may be performed.

The matrix I; is the matrix of size k¥ by k whose general entry 6;; is
defined as follows: 6;; = 0 if ¢ # 7, and &;; = 1 if ¢ = j. The matrix I is
called the identity matrix of size k by k; it has the form

0 0
0 1 0

Ik: )
0 0 1

with entries of 1 on the “main diagonal” and entries of 0 elsewhere.
We extend to matrices the sup norm defined for n-tuples. That is, if A
is a matrix of size n by m with general entry a;;, we define
|A] = max{la;;];¢=1,...,nand j=1,...,m}.
The three properties of a norm are immediate, as is the following useful result:

Theorem 1.3. If A has size n by m, and B has size m by p, then

|A-B|<m|Al|B|. O

5
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Linear transformations

If V and W are vector spaces, a function T : V' — W is called a linear
transformation if it satisfies the following properties, for all x, y in V' and
all scalars c:

() Tx+y)=T(x)+T(y)

(2) T(cx) = cT'(x).

If, in addition, T carries V onto W in a one-to-one fashion, then T is called
a linear isomorphism.

One checks readily that if T : V — W is a linear transformation, and if
S : W — X is a linear transformation, then the composite SoT : V — X is
a linear transformation. Furthermore, if T : V — W is a linear isomorphism,
then T~ : W — V is also a linear isomorphism.

A linear transformation is uniquely determined by its values on basis
elements, and these values may be specified arbitrarily. That is the substance
of the following theorem:

Theorem 1.4. Let V be a vector space with basis a,,...,an. Let
W be a vector space. Given any m vectors by,...,b, in W, there is
exactly one linear transformation T : V — W such that, for all i,
T(a,-) = b,'. O .

In the special case where V and W are “tuple spaces” such as R™ and
R”, matrix notation gives us a convenient way of specifying a linear transfor-
mation, as we now show.

First we discuss row matrices and column matrices. A matrix of size 1
by n is called a row matrix; the set of all such matrices bears an obvious
resemblance to R™. Indeed, under the one-to-one correspondence

(1, 3%n) — [T1 - Tn)

the vector space operations also correspond. Thus this correspondence is a
linear isomorphism. Similarly, a matrix of size n by 1 is called a column
matrix; the set of all such matrices also bears an obvious resemblance to R".
Indeed, the correspondence

T1
(Z1y...yTp) —
Tn

is a linear isomorphism.
The second of these isomorphisms is particularly useful when studying
linear transformations. Suppose for the moment that we represent elements
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of R™ and R™ by column matrices rather than by tuples. If A is a fixed n by
™ matrix, let us define a function T : R™ — R™ by the equation

T(x)=A-x.

The properties of matrix product imply immediately that T is a linear trans-
formation.

In fact, every linear transformation of R™ to R" has this form. The proof
is easy. Given T, let by,...,b,, be the vectors of R"such that T'(e;) = b;.
Then let A be the n by m matrix A = [by - - b,,] with successive columns
bi,...,b,;. Since the identity matrix has columns e,,...,e,,, the equation
A - I, = A implies that A -e; = b; for all . Then A -e; = T(e;) for all j;
it follows from the preceding theorem that A - x = T'(x) for all x.

The convenience of this notation leads us to make the following conven-
tion:

Convention. Throughout, we shall represent the elements of R®
by column matrices, unless we specifically state otherwise.

Rank of a matrix

Given a matrix A of size n by m, there are several important linear spaces
associated with A. One is the space spanned by the columns of A, looked
at as column matrices (equivalently, as elements of R™). This space is called
the column space of A, and its dimension is called the column rank of A.
Because the column space of A is spanned by m vectors, its dimension can
be no larger than m; because it is a subspace of R”, its dimension can be no
larger than n.

Similarly, the space spanned by the rows of A, looked at as row matrices
(or as elements of R™) is called the row space of A, and its dimension is
called the row rank of A.

The following theorem is of fundamental importance:

Theorem 1.5.  For any matriz A, the row rank of A equals the
column rank of A. O

Once one has this theorem, one can speak merely of the rank of a matrix
A, by which one means the number that equals both the row rank of A and
the column rank of A.

The rank of a matrix A is an important number associated with A. One
cannot in general determine what this number is by inspection. However,
there is a relatively simple procedure called Gauss-Jordan reduction that
can be used for finding the rank of a matrix. (It is used for other purposes
as well.) We assume you have seen it before, so we merely review its major
features here.

7
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One considers certain operations, called elementary row operations,
that are applied to a matrix A to obtain a new matrix B of the same size.
They are the following:

(1) Exchange rows ¢; and ¢; of A (where ) # 13).

(2) Replace row 7; of A by itself plus the scalar ¢ times row 2, (where

11 # 12).
(3) Multiply row ¢ of A by the non-zero scalar A.

Each of these operations is invertible; in fact, the inverse of an elementary
operation is an elementary operation of the same type, as you can check. One
has the following result:

Theorem 1.6.  If B is the matriz obtained by applying an elemen-
tary row operation to A, then

rank B =rank A, 0O

Gauss-Jordan reduction is the process of applying elementary operations
to A to reduce it to a special form called echelon form (or stairstep form),
for which the rank is obvious. An example of a matrix in this form is the
following:

® *x * * * x

O|l® * = * =
B =

0 0 0|l® =* =

0 0 0 0 0O

Here the entries beneath the “stairsteps” are 0; the entries marked *
may be zero or non-zero, and the “corner entries,” marked ®, are non-zero.
(The corner entries are sometimes called “pivots.”) One in fact needs only
operations of types (1) and (2) to reduce A to echelon form.

Now it is easy to see that, for a matrix B in echelon form, the non-zero
rows are independent. It follows that they form a basis for the row space of B,
so the rank of B equals the number of its non-zero rows.

For some purposes it is convenient to reduce B to an even more spe-
cial form, called reduced echelon form. Using elementary operations of
type (2), one can make all the entries lying directly above each of the corner
entries into 0’s. Then by using operations of type (3), one can make all the
corner entries into 1’s. The reduced echelon form of the matrix B considered
previously has the form:

1 0 x 0 % =
01 = O

C- * %
0 0 01 * =
0 00 0 0O
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It is even easier to see that, for the matrix C, its rank equals the number
of its non-zero rows.

Transpose of a matrix

Given a matrix A of size n by m, we define the transpose of A to be
the matrix D of size m by n whose general entry in row ¢ and column j is
defined by the equation d;; = aj;. The matrix D is often denoted A™.

The following properties of the transpose operation are readily verified:

(1) (A"} = A.

(2) (A+ B)fr = A" + B*.
3)(A-C)Yr=Ct. A'r,
(4) rank A*" = rank A.

The first three follow by direct computation, and the last from the fact that
the row rank of A" is obviously the same as the column rank of A.

EXERCISES

1. Let V be a vector space with inner product (x,y} and norm ||x| =
(x,x)!/2.

(a) Prove the Cauchy-Schwarz inequality (x,y) < |Ix|||lvll. [Hint:

If x,y #0, set ¢ = 1/||x|| and d = 1/||y|| and use the fact that
llex £ dy|| > 0]
(b) Prove that ||x + y|| < |Ix]| + llyll. [Hint: Compute (x +y,x +y)
and apply (a).]
(c) Prove that [lx —y|| > ix|| - lly]]-
2. If Aisan n by m matrix and B is an m by p matrix, show that

|A-Bj < m|A||B|.

3. Show that the sup norm on R? is not derived from an inner product on R?.
[Hint: Suppose (x,y) is an inner product on R? (not the dot product)
having the property that |x| = (x,y)ln. Compute (x + y,x +y) and
apply to the case x = e; and y = e3.]

4. (a) If x = (z1,22) and y = (%1, ¥2), show that the function

(59) = [z 2] [_f '11} [Z]

is an inner product on RZ.
*(b) Show that the function

B a b{|wn
e

is an inner product on R? if and only if ¥> — ac < 0 and a > 0.

9
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*5. Let V be a vector space; let {as} be a set of vectors of V', as a ranges over
some index set J (which may be infinite). We say that the set {aa} spans
V if every vector x in V can be written as a finite linear combination

X = Ca;aa, + - +Cakaak

of vectors from this set. The set {aq} is independent if the scalars are
uniquely determined by x. The set {a.} is a basis for V if it both spans
V and is independent.

(a)

(b)

(©)

(d)

(¢)

Check that the set R“of all “infinite-tuples” of real numbers
X = (1:1,1'2,...)

is a vector space under component-wise addition and scalar multipli-
cation.

Let R™ denote the subset of R consisting of all x = (z1,%2,...)
such that z; = 0 for all but finitely many values of ¢. Show R is a
subspace of R¥; find a basis for R®.

Let F be the set of all real-valued functions f:[a,b] — R. Show that
F is a vector space if addition and scalar multiplication are defined
in the natural way:

(f + 9)(z) = f(z) + 9(2),
(cf)(z) = cf(2).

Let Fg be the subset of F consisting of all bounded functions. Let
Fi consist of all integrable functions. Let F¢ consist of all continuous
functions. Let Fp consist of all continuously differentiable functions.
Let Fp consist of all polynomial functions. Show that each of these
is a subspace of the preceding one, and find a basis for Fe.

There is a theorem to the effect that every vector space has a
basis. The proof is non-constructive. No one has ever exhibited
specific bases for the vector spaces RY, F, Fs, Fi1, Fc, Fb.

Show that the integral operator and the differentiation operator,

If)(z) = / fydt  md  (Df)@) = @),

are linear transformations. What are possible domains and ranges of
these transformations, among those listed in (d)?
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§2. MATRIX INVERSION AND DETERMINANTS

We now treat several further aspects of linear algebra. They are the following:
elementary matrices, matrix inversion, and determinants. Proofs are included,
in case some of these results are new to you.

Elementary matrices

Definition. An elementary matrix of size n by n is the matrix ob-
tained by applying one of the elementary row operations to the identity ma-
trix I,.

The elementary matrices are of three basic types, depending on which
of the three operations is used. The elementary matrix corresponding to the
first elementary operation has the form

r 1 -

\\ Tow i
/S Tow i3

1

The elementary matrix corresponding to the second elementary row operation
has the form

-1 -

\ oW %;

E = ..
/ TOW 1




12

The Algebra and Topology of R” Chapter 1

And the elementary matrix corresponding to the third elementary row oper-
ation has the form

1
1
A
E" = N\ TOW i.
1

5 1]
One has the following basic result:
Theorem 2.1. Let A be an n by m matriz. Any elementary

row operation on A may be carried out by premultiplying A by the
corresponding elementary matriz.

Proof. One proceeds by direct computation. The effect of multiplying A
on the left by the matrix E is to interchange rows ¢; and 73 of A. Similarly,
multiplying A by E’ has the effect of replacing row ¢; by itself plus ¢ times
row i3. And multiplying A by E” has the effect of multiplyingrow i by A. [

We will use this result later on when we prove the change of variables
theorem for a multiple integral, as well as in the present section.

The inverse of a matrix

Definition. Let A be a matrix of size n by m; let B and C be matrices
of size m by n. We say that B is a left inverse for A if B- A= I,,, and we
say that C is a right inverse for Aif A-C = I,,.

Theorem 2.2. If A has both a left inverse B and a right inverse
C, then they are unique and equal.

Proof. Equality follows from the computation
C=I, C=(B-A)-C=B-(A-C)=B-I,=B.
If B; is another left inverse for A, we apply this same computation with By

replacing B. We conclude that C = By; thus B, and B are equal. Hence B
is unique. A similar computation shows that C is unique. O
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Definition. If A has both a right inverse and a left inverse, then A is
sald to be invertible. The unique matrix that is both a right inverse and a
left inverse for A is called the inverse of A, and is denoted A~1.

A necessary and sufficient condition for A to be invertible is that A be
square and of maximal rank. That is the substance of the following two
theorems:

Theorem 2.3.  Let A be a matriz of size n by m. If A is invertible,

then
n=m= rank A.

Proof. Step 1. We show that for any k by n matrix D,

rank (D - A) < rank A.

The proof is easy. If R is a row matrix of size 1 by n, then R - A is a row
matrix that equals a linear combination of the rows of A, so it is an element
of the row space of A. The rows of D - A are obtained by multiplying the
rows of D by A. Therefore each row of D - A is an element of the row space
of A. Thus the row space of D - A is contained in the row space of A and our
inequality follows.

Step 2. We show that if A has a left inverse B, then the rank of A
equals the number of columns of A.

The equation I, = B - A implies by Step 1 that m = rank (B - A) <
rank A. On the other hand, the row space of A is a subspace of m-tuple
space, so that rank A < m.

Step 3. We prove the theorem. Let B be the inverse of A. The fact
that B is a left inverse for A implies by Step 2 that rank A = m. The fact
that B is a right inverse for A implies that

Btr . Atr — I't.r — I,,,

whence by Step 2, rank A=n. O

We prove the converse of this theorem in a slightly strengthened version:
Theorem 2.4. Let A be a matriz of size n by m. Suppose
n=m = rank A.

Then A is invertible; and furthermore, A equals a product of elementary
matrices.

13
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Proof. Step 1. We note first that every elementary matrix is invert-
ible, and that its inverse is an elementary matrix. This follows from the fact
that elementary operations are invertible. Alternatively, you can check di-
rectly that the matrix E corresponding to an operation of the first type is its
own inverse, that an inverse for E’ can be obtained by replacing ¢ by —c in
the formula for E’, and that an inverse for E” can be obtained by replacing
A by 1/ in the formula for E”.

Step 2. We prove the theorem. Let A be an n by n matrix of rank n.
Let us reduce A to reduced echelon form C by applying elementary row
operations. Because C is square and its rank equals the number of its rows,
C must equal the identity matrix I,,. It follows from Theorem 2.1 that there
is a sequence Ej,..., Ei of elementary matrices such that

Ev(Era(- - (Eo(Ey - A))--9)) = Ln.

If we multiply both sides of this equation on the left by Ek'l, then by E'k__ll,
and so on, we obtain the equation

A=E' - E;'- - E;Y;

thus A equals a product of elementary matrices. Direct computation shows
that the matrix
B=E, Ei, - E

is both a right and a left inverse for A. O

One very useful consequence of this theorem is the following:

Theorem 2.5. If A is a square matriz and if B is a left inverse
for A, then B is also a right inverse for A.

Proof. Since A has a left inverse, Step 2 of the proof of Theorem 2.3
implies that the rank of A equals the number of columns of A. Since A is
square, this is the same as the number of rows of A, so the preceding theorem
implies that A has an inverse. By Theorem 2.2, this inverse must be B. O

An n by n matrix A is said to be singular if rank A < n; otherwise,
it is said to be non-singular. The theorems just proved imply that A ils
invertible if and only if A is non-singular.

Determinants

The determinant is a function that assigns, to each square matrix A, a
number called the determinant of A and denoted det A.
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The notation | A| is often used for the determinant of A, but we are using
this notation to denote the sup norm of A. So we shall use “det A” to denote
the determinant instead.

In this section, we state three axioms for the determinant function, and
we assume the existence of a function satisfying these axioms. The actual
construction of the general determinant function will be postponed to a later
chapter.

Definition. A function that assigns, to each n by n matrix A, a real
number denoted det A, is called a determinant function if it satisfies the
following axioms:

(1) If B is the matrix obtained by exchanging any two rows of A, then

det B = —det A.

(2) Given 1, the function det A is linear as a function of the ¢*" row alone.

(3) det I, = 1.

Condition (2) can be formulated as follows: Let ¢ be fixed. Given an
n-tuple x, let A;(x) denote the matrix obtained from A by replacing the 7th
row by x. Then condition (2) states that

det A;(ax + by) = adet A;(x) + bdet A;(y).

These three axioms characterize the determinant function uniquely, as we
shall see.

EXAMPLE 1. In low dimensions, it is easy to construct the determinant func-
tion. For 1 by 1 matrices, the function

det [a] = a

will do. For 2 by 2 matrices, the function

det [Z 3} =ad — be

suffices. And for 3 by 3 matrices, the function

b1 b2 b3
—a3b2c1 — a1b302 — 02b103

a; az as

ai1bacs + azbsci + azbic;

det =
(&3] C2 C3

will do, as you can readily check. For matrices of larger size, the definition
is more complicated. For example, the expression for the determinant of a 4
by 4 matrix involves 24 terms; and for a 5 by 5 matrix, it involves 120 terms!
Obviously, a less direct approach is needed. We shall return to this matter in
Chapter 6.

Using the axioms, one can determine how the elementary row operations
affect the value of the determinant. One has the following result:

15
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Theorem 2.6. Let A be an n by n matriz.

(a) If E is the elementary matriz corresponding to the operation
that exchanges rows 1, and iz, then det(E - A) = —det A.

(b) If E' is the elementary matriz corresponding to the operation
that replaces row i; of A by itself plus ¢ times row iy, then det(E'- A) =
det A.

(c) If E" is the elementary matriz corresponding to the operation
that multiplies row i of A by the non-zero scalar A, then det(E"” - A) =
A(det A).

(d) If A is the identity matriz I,,, then det A =1.

Proof. Property (a) is a restatement of Axiom 1, and (d) is a restate-
ment of Axiom 3. Property (c) follows directly from linearity (Axiom 2); it
states merely that

det A;(Ax) = A(det A;(x)).

Now we verify (b). Note first that if A has two equal rows, then det A=0.
For exchanging these rows does not change the matrix A, but by Axiom 1 it
changes the sign of the determinant. Now let E' be the elementary operation
that replaces row i = i; by itself plus ¢ times row ¢5. Let x equal row 7, and
let y equal row 3. We compute

det(E’ - A) = det A;(x +cy)
= det A;(x) + cdet A;(y)
= det A;(x), since A;(y) has two equal rows,
=det A, since 4;(x)=A. O

The four properties of the determinant function stated in this theorem are
what one usually uses in practice rather than the axioms themselves. They
also characterize the determinant completely, as we shall see.

One can use these properties to compute the determinants of the elemen-
tary matrices. Setting A = I, in Theorem 2.6, we have

det E=—1 and detE'=1 and detE”=A.

We shall see later how they can be used to compute the determinant in general.
Now we derive the further properties of the determinant function that we
shall need.

Theorem 2.7. Let A be a square matriz. If the rows of A are
independent, then det A # 0; if the rows are dependent, then det A = 0.
Thus an n by n matriz A has rank n if and only if det A # 0.
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Proof. First, we note that if the i*" row of A is the zero row, then
det A = 0. For multiplying row i by 2 leaves A unchanged; on the other
hand, it must multiply the value of the determinant by 2.

Second, we note that applying one of the elementary row operations to A
does not affect the vanishing or non-vanishing of the determinant, for it alters
the value of the determinant by a factor of either —1 or 1 or A (where A # 0).

Now by means of elementary row operations, let us reduce A to a matrix B
in echelon form. (Elementary operations of types (1) and (2) will suffice.) If
the rows of A are dependent, rank A < n; then rank B < n, so that B must
have a zero row. Then det B = 0, as just noted; it follows that det A = 0.

If the rows of A are independent, let us reduce B further to echelon
form C. Since C is square and has rank n, C must equal the identity ma-
trix In. Then det C # 0; it follows that det A £ 0. O

The proof just given can be refined so as to provide a method for calcu-
lating the determinant function:

Theorem 2.8. Given a square matriz A, let use reduce it to
echelon form B by elementary row operations of types (1) and (2). If
B has a zero row, then det A = 0. Otherwise, let k be the number of row
ezchanges involved in the reduction process. Then det A equals (—1)*
times the product of the diagonal entries of B.

Proof. If B has a zero row, then rank A < n and det A = 0. So
suppose that B has no zero row. We know from (a) and (b) of Theorem 2.6
that det A = (—1)F det B. Furthermore, B must have the form

b11 * *

0 b22 *
B= )

0 0 ... bpn

where the diagonal entries are non-zero. It remains to show that
det;B = b11b22 tee b,"..

For that purpose, let us apply elementary operations of type (2) to make
the entries above the diagonal into zeros. The diagonal entries are unaffected
by the process; therefore the resulting matrix has the form

by 0 ... 0
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Since only operations of type (2) are involved, we have det B = det C.
Now let us multiply row 1 of C by 1/by;, row 2 by 1/bs,, and so on, obtaining
as our end result the identity matrix I,. Property (c) of Theorem 2.6 implies
that

det I,, = (1/b11) (1/1)22) T (l/b,,,,)det C,

so that (using property (d))
det C = b11bq3 -+ bpp,s
as desired. 0O

Corollary 2.9.  The determinant function is uniquely character-
ized by its three azioms. It is also characterized by the four properties
listed in Theorem 2.6.

Proof. The calculation of det A just given uses only properties (a)-(d)
of Theorem 2.6. These in turn follow from the three axioms. O

Theorem 2.10. Let A and B be n by n matrices. Then

det(A - B) = (det A) - (det B).

Proof. Step 1. The theorem holds when A is an elementary matrix.

Indeed:
det(F - B) = —det B = (det E) (det B),

det(E' - B) = det B = (det E’) (det B),
det(E” - B) = A - det B = (det E”) (det B).
Step 2. The theorem holds when rank A = n. For in that case, A is

a product of elementary matrices, and one merely applies Step 1 repeatedly.
Specifically, if A = E; --- Ey, then

det(A - B) = det(Ey --- Ei - B)
= (det Ey)det(E; --- E; - B)

= (det Ey) (det E3) - - - (det Ey) (det B).

This equation holds for all B. In the case B = I,,, it tells us that

det A = (det E4) (det Es) - - - (det Ep).

The theorem follows.
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Step 8. We complete the proof by showing that the theorem holds if
rank A < n. We have in general,

rank (A - B) = rank (A - B)" = rank (B* - A*™) < rank A",

where the inequality follows from Step 1 of Theorem 2.3. Thus if rank A < n,
the theorem holds because both sides of the equation vanish. O

Even in low dimensions, this theorem would be very unpleasant to prove
by direct computation. You might try it in the 2 by 2 case!

Theorem 2.11. det A'" = det A.

Proof. Step 1. We show the theorem holds when A is an elementary
matrix.

Let E, E’, and E" be elementary matrices of the three basic types. Direct
inspection shows that E** = E and (E”)* = E”, so the theorem is trivial
in these cases. For the matrix E’ of type (2), we note that its transpose is
another elementary matrix of type (2), so that both have determinant 1.

Step 2. We verify the theorem when A has rank n. In that case, Ais a
product of elementary matrices, say

A=E,-E,---E;.

Then
det AY = det(E}"--- E5F - E}F)
= (det E}") - - - (det E5) (det Et¥) by Theorem 2.10,
= (det Ey) - - - (det Ey) (det Ey) by Step 1,
= (det By) (det Ey) - - - (det Ey)
= det(E'l By Ek)
= det A.

Step 3. The theorem holds if rank A < n. In this case, rank A < n,
so that det A* =0 =det A. O

A formula for A-!
We know that A is invertible if and only if det A # 0. Now we derive a

formula for A~! that involves determinants explicitly.

Definition. Let A be an n by n matrix. The matrix of size n — 1 by
n — 1 that is obtained from A by deleting the #** row and the j*" column of
A is called the (7, 7)-minor of A. It is denoted A;;. The number

(—l)i+j det A,‘j
is called the (Z,j)-cofactor of A.

19
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Lemma 2.12. Let A be an n by n matriz; let b denote ils entry
in row i and column j.

(a) If all the entries in row ¢ other than b vanish, then
det A = b(—l)”’j det A,’j.

(b) The same equation holds if all the entries in column j other than
the entry b vanish.

Proof. Step 1. We verify a special case of the theorem. Let b, a,...,a,
be fixed numbers. Given an n — 1 by n — 1 matrix D, let A(D) denote the n
by n matrix

b a, ... a,
0

A(D) =

0
We show that det A(D) = b(det D).

If b = 0, this result is obvious, since in that case rank A(D) < n. So
assume b # 0. Define a function f by the equation

£(D) = (1/b) det A(D).

We show that f satisfies the four properties stated in Theorem 2.6, so that
f(D) =det D.

Exchanging two rows of D has the effect of exchanging two rows of A(D),
which changes the value of f by a factor —1. Replacing row i; of D by itself
plus ¢ times row 2 of D has the effect of replacing row (¢; + 1) of A(D)
by itself plus row (i2 + 1) of A(D), which leaves the value of f unchanged.
Multiplying row ¢ of D by A has the effect of multiplying row (2 + 1) of A(D)
by A, which changes the value of f by a factor of A\. Finally, if D = I,,_;,
then A(D) is in echelon form, so det A(D) =b-1---1 by Theorem 2.8, and
f(D)=1.

Step 2. 1t follows by taking transposes that

b 0 ... 0

a>
det | = b(det D).
: D

an

Step 3. We prove the theorem. Let A be a matrix satisfying the hy-
potheses of our theorem. One can by a sequence of ¢ — 1 exchanges of adjacent
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rows bring the 7*® row of A up to the top of matrix, without affecting the
order of the remaining rows. Then by a sequence of j — 1 exchanges of adja-
cent columns, one can bring the j*® column of this matrix to the left edge of
the matrix, without affecting the order of the remaining columns. The ma-
trix C that results has the form of one of the matrices considered in Steps 1
and 2. Furthermore, the (1,1)-minor C; ; of the matrix C is identical with
the (%, 7)-minor A;; of the original matrix A.

Now each row exchange changes the sign of the determinant. So does
each column exchange, by Theorem 2.11. Therefore

det C = (-1)0~D+0-Ddet A = (—1)'*+ det A.
Thus o
det A = (=1)'*7 det C,
= (=1)"*bdet Cy, by Steps 1 and 2,
= (—1)i+jbdet A,‘j. O

Theorem 2.13 (Cramer’s rule). Let A be an n by n matriz with
successive columns a;,...,a,. Let

T €1
x=|: and c=

Tn Cn
be column matrices. If A-x =c, then
(det A) -z; = det [a; ---a;_1 € a;41 ---a,).
Proof. Let ej,...,e, be the standard basis for R®, where each e; is
written as a column matrix. Let C be the matrix
C=ler1 €1 xe41 eyl
The equations A -e; = a; and A -x = ¢ imply that
A-C=la; aj_;cajpr-an)
By Theorem 2.10,

(det A) - (det C) = det [a; ---a;—1 € aj41 -+ -a,).

21
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Now C has the form

1 Ty 0
C=10 z; 0f,
o ... z, ... 1

where the entry z; appears in row ¢ and column . Hence by the preceding

lemma, o
detC = 1),‘(—1)"“ det I,y = z;.

The theorem follows. [
Here now is the formula we have been seeking:

Theorem 2.14.  Let A be an n by n matriz of rank n; let B = A=,

Then L
b = (—1)]+' det Aj,'
v det A ’

Proof. Let j be fixed throughout this argument. Let
Ty
zn
denote the j*! column of the matrix B. The fact that A - B = I,, implies in
particular that A -x = e;. Cramer’s rule tells us that
(det A) - z; = det [a;---a;_1 €j a;41 - a,).
We conclude from Lemma 2.12 that
(det A) - z; = 1-(=1)* det A;;.
Since z; = b;;, our theorem follows. O

This theorem gives us an algorithm for computing the inverse of a ma-
trix A. One proceeds as follows:

(1) First, form the matrix whose entry in row ¢ and column j is
(—1)** det A;;; this matrix is called the matrix of cofactors of A.

(2) Second, take the transpose of this matrix.
(3) Third, divide each entry of this matrix by det A.
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This algorithm is in fact not very useful for practical purposes; computing
determinants is simply too time-consuming. The importance of this formula
for A~! is theoretical, as we shall see. If one wishes actually to compute A1,
there is an algorithm based on Gauss-Jordan reduction that is more efficient.
It is outlined in the exercises.

Expansion by cofactors

We now derive a final formula for evaluating the determinant. This is the
one place we actually need the axioms for the determinant function rather
than the properties stated in Theorem 2.6.

Theorem 2.15. Let A be an n by n matriz. Let i be fized. Then

det A = Z(—l)i+kd,‘k - det A,‘k.

k=1

Here Ay is, as usual, the (i, k)-minor of A. This rule is called the “rule
for expansion of the determinant by cofactors of the *P row.” There is a
similar rule for expansion by cofactors of the j*® column, proved by taking
transposes.

Proof. Let Ai(x), as usual, denote the matrix obtained from A by re-
placing the P row by the n-tuple x. If e;,...,e, denote the usual basis
vectors in R™ (written as row matrices in this case), then the i*® row of A
can be written in the form

n
E aip€ef.
k=1

Then

det A = Z aix - det A;(ex) by linearity (Axiom 2),
k=1

= au(-1)**det Ax by Lemma 2.12. O
k=1

23
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1 2
Azl:l -11.
0 1

(a) Find two different left inverses for A.
(b) Show that A has no right inverse.
2. Let A be an n by m matrix with n # m.

EXERCISES

1. Consider the matrix

(a) If rank A = m, show there exists a matrix D that is a product of
elementary matrices such that

D A= [Ig‘].

(b) Show that A has a left inverse if and only if rank A = m.
(c) Show that A has a right inverse if and only if rank A = n.

3. Verify that the functions defined in Example 1 satisfy the axioms for the
determinant function.

4. (a) Let A be an n by n matrix of rank n. By applying elementary row
operations to A, one can reduce A to the identity matrix. Show
that by applying the same operations, in the same order, to I, one

obtains the matrix A~!.
(b) Let

1 2 3
A=]0 1 2
1 21

Calculate A™! by using the algorithm suggested in (a). [Hint: An
easy way to do this is to reduce the 3 by 6 matrix [A I3] to reduced
echelon form.]

(c) Calculate A~? using the formula involving determinants.
5. Let b
a
A= ,

where ad — bc # 0. Find A™".

*6. Prove the following:

Theorem. Let A be a k by k matriz, let D have size n by n and
let C have size n by k. Then

A o
det [C D} = (det A) - (det D).
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Proof. First show that
A o I 0] [A o
o I.] |C Df [C D]’

Then use Lemma 2.12.

25
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Metric spaces

Recall that if A and B are sets, then A x B denotes the set of all ordered
pairs (a,b) for which a € A and b € B.

Given a set X, a metric on X is a function d: X x X — R such that
the following properties hold for all z,y,2z € X:

(1) d(z,y) = d(y, z).

(2) d(z,y) > 0, and equality holds if and only if z = y.

(3) d(z,2) < d(z,y) + d(y, 2).
A metric space is a set X together with a specific metric on X. We often
suppress mention of the metric, and speak simply of “the metric space X.”

If X is a metric space with metric d, and if Y is a subset of X, then the
restriction of d to the set Y x Y is a metric on Y'; thus Y is a metric space
in its own right. It is called a subspace of X.

For example, R® has the metrics

dix,y)=[|x—y]l and d(x,y)=|x-y];

they are called the euclidean metric and the sup metric, respectively. It
follows immediately from the properties of a norm that they are metrics. For
many purposes, these two metrics on R™ are equivalent, as we shall see.

We shall in this book be concerned only with the metric space R” and
its subspaces, except for the expository final section, in which we deal with
general metric spaces. The space R™ is commonly called n-dimensional
euclidean space.

If X is a metric space with metric d, then given 29 € X and given € > 0,
the set

U(zo;€) = {z]d(z,20) < €}
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is called the e-neighborhood of zg, or the e-neighborhood centered at
Zo. A subset U of X is said to be open in X if for each o € U there is a
corresponding € > 0 such that U(zg;¢€) is contained in U. A subset C of X
is said to be closed in X if its complement X — C is open in X. It follows
from the triangle inequality that an e-neighborhood is itself an open set.

If U is any open set containing o, we commonly refer to U simply as a
neighborhood of z.

Theorem 3.1.  Let (X,d) be a metric space. Then finite intersec-
tions and arbitrary unions of open sets of X are open in X. Similarly,
finite unions and arbitrary intersections of closed sets of X are closed
m X. O

Theorem 3.2.  Let X be a metric space; let Y be a subspace. A
subset A of Y is open in Y if and only if it has the form

A=UnY,

where U is open in X. Similarly, a subset A of Y is closed in Y if and

only if it has the form
A=CnY,

where C is closed in X. O

It follows that if A is open in Y and Y is open in X, then A is open in
X. Similarly, if A is closed in Y and Y is closed in X, then A is closed in X .

If X is a metric space, a point o of X is said to be a limit point
of the subset A of X if every e-neighborhood of zg intersects A in at least
one point different from z,. An equivalent condition is to require that every
neighborhood of zy contain infinitely many points of A.

Theorem 3.3.  If A is a subset of X, then the set A consisting
of A and all its limit points is a closed set of X. A subset of X is closed
of and only if it contains all its limit points. O

The set A is called the closure of A.

In R", the e-neighborhoods in our two standard metrics are given special
names. If a € R”, the e-neighborhood of a in the euclidean metric is called the
open ball of radius € centered at a, and denoted B(a; €). The e-neighborhood
of a in the sup metric is called the open cube of radius € centered at a, and
denoted C(a; €). The inequalities |x| < || x| < +/n|x]| lead to the following
inclusions:

B(a;€) C C(a;¢) C B(a;vne).

These inclusions in turn imply the following:
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Theorem 3.4. If X is a subspace of R", the collection of open
sets of X is the same whether one uses the euclidean metric or the sup
metric on X. The same is true for the collection of closed sets of X. O

In general, any property of a metric space X that depends only on the
collection of open sets of X, rather than on the specific metric involved, is
called a topological property of X. Limits, continuity, and compactness
are examples of such, as we shall see.

Limits and Continuity

Let X and Y be metric spaces, with metrics dx and dy, respectively.

We say that a function f: X — Y is continuous at the point 2o of X
if for each open set V of Y containing f(zo), there is an open set U of X
containing g such that f(U) C V. We say f is continuous if it is continuous
at each point zo of X. Continuity of f is equivalent to the requirement that
for each open set V of Y, the set

iV ={z|f(z) € V}

is open in X, or alternatively, the requirement that for each closed set D
of Y, the set f~1(D) is closed in X.

Continuity may be formulated in a way that involves the metrics specif-
ically. The function f is continuous at ¢ if and only if the following holds:
For each ¢ > 0, there is a corresponding 6 > 0 such that

dy(f(z), f(zo)) < € whenever dx(z,z¢) < 6.

This is the classical “e-§ formulation of continuity.”

Note that given zo € X it may happen that for some § > 0, the §-
neighborhood of z¢ consists of the point z¢ alone. In that case, zg is called an
isolated point of X, and any function f : X — Y is automatically continuous
at 1'0!

A constant function from X to Y is continuous, and so is the identity
function ix : X — X. So are restrictions and composites of continuous func-
tions:

Theorem 3.5. (a) Let zo € A, where A is a subspace of X. If
f:X =Y is continuous at z, then the restricted function f|A:A—Y
18 continuous at zg.

(b) Let f: X - Y and g:Y — Z. If f is continuous at zo and g is
continuous at Yo = f(zo), then go f: X — Z is continuous at z,. O

Theorem 3.6. (a) Let X be a metric space. Let f: X — R™ have

the form
f(:l)) = (fl(z)a . ,fn(m))
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Then f is continuous at zo if and only if each function f;: X — R s
continuous at xo. The functions f; are called the component functions
of f.

(b) Let f,g: X — R be continuous at zo. Then f+g and f —g and
f - g are continuous at zo; and f/g is continuous at zo if g(xo) # 0.

(c) The projection function ; :R™ — R given by m;(x) = z; is con-
tinuous. 0O

These theorems imply that functions formed from the familiar real-valued
continuous functions of calculus, using algebraic operations and composites,
are continuous in R™. For instance, since one knows that the functions e* and
sin = are continuous in R, it follows that such a function as

f(s,t,u,v) = (sin(s +1))/€*

is continuous in R%.

Now we define the notion of limit. Let X be a metric space. Let A C X
andlet f:A — Y. Let 2o be a limit point of the domain A of f. (The point
zo may or may not belong to A.) We say that f(z) approaches yo as =
approaches z; if for each open set V of Y containing yo, there is an open
set U of X containing xo such that f(z) € V whenever x is in U N A and
x # xo. This statement is expressed symbolically in the form

f(@) >y as z— zo.

We also say in this situation that the limit of f(x), as 2 approaches g, is
yo. This statement is expressed symbolically by the equation

Jim f(z) = go.

Note that the requirement that 2, be a limit point of A guarantees that
there exzist points z different from zo belonging to the set UN A. We do not
attempt to define the limit of f if z¢ is not a limit point of the domain
of f.

Note also that the value of f at zo (provided f is even defined at zo) is
not involved in the definition of the limit.

The notion of limit can be formulated in a way that involves the metrics
specifically. One shows readily that f(z) approaches yo as = approaches zg
if and only if the following condition holds: For each € > 0, there is a
corresponding § > 0 such that

dy(f(z),y0) < € whenever z€ A and 0< dx(z,z) <é.

There is a direct relation between limits and continuity; it is the following;:
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Theorem 3.7. Let f: X — Y. If zo is an isolated point of X,
then f is continuous at zy. Otherwise, f is continuous at z, if and only

if f(z) — f(zo) as x — 9. O

Most of the theorems dealing with continuity have counterparts that deal
with limits:

Theorem 3.8. (a) Let AC X; let f: A — R™ have the form

f(@) = (fi(=), ..., fa(2)).

Let a=(ay,...,a,). Then f(z) — a as x — o if and only if fi(z) — a;
as r — o, for each i,
(b) Let f,g: A —R. If f(z) = a and g(z) — b as x — zq, then as

T — Xy,
f@)+9(z) > a+b,
f(2) - g(z) »a-0b,
f(z) - g(z) - a-b;

also, f(z)/g(z) — afb if b#0. O

Interior and Exterior

The following concepts make sense in an arbitrary metric space. Since we
shall use them only for R", we define them only in that case.

Definition. Let A be a subset of R". The interior of A, as a subset of
R", is defined to be the union of all open sets of R™ that are contained in A;
it is denoted Int A. The exterior of A is defined to be the union of all open
sets of R™ that are disjoint from A; it is denoted Ext A. The boundary of A
consists of those points of R™ that belong neither to Int A nor to Ext A; it is
denoted Bd A.

A point x is in Bd A if and only if every open set containing x intersects
both A and the complement R® — A of A. The space R" is the union of the
disjoint sets Int A, Ext A, and Bd A; the first two are open in R" and the
third is closed in R™.

For example, suppose () is the rectangle

Q = [alabl] X - X [ambn]9

consisting of all points x of R™ such that a; < z; < b; for all . You can check
that
Int ) = (a1,b1) X -+ X (@n,by).
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We often call Int ) an open rectangle. Furthermore, Ext @ = R" — @ and

Bd@Q =Q —Int Q.

An open cube is a special case of an open rectangle; indeed,

C(aje) = (a1 —€,a1 +€) X - X (@ — €,apn + €).

The corresponding (closed) rectangle

C=[a;—¢€a;+€x--x[a,—¢€a, +€

is often called a closed cube, or simply a cube, centered at a.

EXERCISES

Throughout, let X be a metric space with metric d.

1.
2.

Show that U(zo; €) is an open set.
Let Y C X. Give an example where A is open in Y but not open in X.
Give an example where A is closed in Y but not closed in X.

Let A C X. Show that if C is a closed set of X and C contains A, then
C contains A.

. (a) Show that if ) is a rectangle, then Q) equals the closure of Int Q).

(b) If D is a closed set, what is the relation in general between the set D
and the closure of Int D?

(c) I U is an open set, what is the relation in general between the set U
and the interior of U?

. Let f: X — Y. Show that f is continuous if and only if for each z € X

there is a neighborhood U of = such that f|U is continuous.

. Let X = AU B, where A and B are subspaces of X. Let f: X — Y;

suppose that the restricted functions
fIA:A-=Y and f|B:B-Y

are continuous. Show that if both A and B are closed in X, then f is
continuous.

. Finding the limit of a composite function go f is easy if both f and g are

continuous; see Theorem 3.5. Otherwise, it can be a bit tricky:

Let f:X — Y and g:Y — Z. Let o be a limit point of X and let
Yo be a limit point of Y. See Figure 3.1. Consider the following three
conditions:

(i) f(z) — yo as = — zo.

(i) 9(y) — 20 as y — Yo.

(iii) g(f(z)) — 20 as £ — xo.
(a) Give an example where (i) and (ii) hold, but (iii) does not.
(b) Show that if (i) and (ii) hold and if g(¥o) = zo, then (iii) holds.
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8. Let f:R — R be defined by setting f(z) = sinz if z is rational, and
f(z) =0 otherwise. At what points is f continuous?

9. If we denote the general point of R? by (z,y), determine Int A, Ext A, and
Bd A for the subset A of R? specified by each of the following conditions:

(a) z=0. (e) = and y are rational.
(b)o<z<. Ho<z*+y* <1
(c)oLz<land 0Ly <1 (8) ¥y < 2%
(d) z is rational and y > 0. (h) y £ 22
f g
X Y Z

Figure 3.1
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COMPACT SUBSPACES AND CONNECTED SUBSPACES OF R”

An important class of subspaces of R” is the class of compact spaces. We shall
use the basic properties of such spaces constantly. The properties we shall
need are summarized in the theorems of this section. Proofs are included,
since some of these results you rnay not have seen before.

A second useful class of spaces is the class of connected spaces; we sum-
marize here those few properties we shall need.

We do not attempt to deal here with compactness and connectedness in
arbitrary metric spaces, but comment that many of our proofs do hold in that
more general situation.

Compact spaces

Definition. Let X be a subspace of R”. A covering of X is a collection
of subsets of R whose union contains X; if each of the subsets is open in R",
it is called an open covering of X. The space X is said to be compact if
every open covering of X contains a finite subcollection that also forms an
open covering of X.

While this definition of compactness involves open sets of R, it can be
reformulated in a manner that involves only open sets of the space X:

Theorem 4.1. A subspace X of R" is compact if and only if for
every collection of sets open in X whose union is X, there is a finite
subcollection whose union equals X.

Proof.  Suppose X is compact. Let {A,} be a collection of sets open
in X whose union is X. Choose, for each @, an open set U, of R® such
that Ao = Uy N X. Since X is compact, some finite subcollection of the
collection {Uy} covers X, say for @ = ay,...,a;. Then the sets Ag, for
Q = @y, ..., 0, have X as their union.

The proof of the converse is similar. [

The following result is always proved in a first course in analysis, so the
proof will be omitted here:

Theorem 4.2.  The subspace [a,b] of R is compact. O

Definition. A subspace X of R" is said to be bounded if there is an
M such that |[x| < M for all x € X.

We shall eventually show that a subspace of R” is compact if and only if
it is closed and bounded. Half of that theorem is easy; we prove it now:
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Theorem 4.3.  If X is a compact subspace of R", then X is closed
and bounded.

Proof. Step 1. We show that X is bounded. For each positive inte-
ger N, let Uy denote the open cube Uy = C(0; N). Then Uy is an open
set; and U; C Us C -+ -; and the sets Uy cover all of R® (so in particular they
cover X). Some finite subcollection also covers X, say for N = Ny, ..., Ni.
If M is the largest of the numbers Ny, ..., N, then X is contained in Up;
thus X is bounded.

Step 2. We show that X is closed by showing that the complement of
X is open. Let a be a point of R® not in X; we find an eneighborhood of a
that lies in the complement of X.

For each positive integer IV, consider the cube

Cn ={x;|x—a| <1/N}.

Then C; O C3 O ---, and the intersection of the sets Cy consists of the
point a alone. Let Vv be the complement of Cy; then Vi is an open set; and
Vi C V5 C ---: and the sets Vv cover all of R™except for the point a (so they
cover X). Some finite subcollection covers X, say for N = Ny,...,Ny. If M
is the largest of the numbers Ny, ..., Ni, then X is contained in Vas. Then
the set Cps is disjoint from X, so that in particular the open cube C(a;1/M)
lies in the complement of X. See Figure 4.1. O

Cs

G

\

G

Figure 4.1

Corollary 4.4.  Let X be a compact subspace of R. Then X has a
largest element and a smallest element.
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Proof. Since X is bounded, it has a greatest lower bound and a least
upper bound. Since X is closed, these elements must belong to X. 0O

Here is a basic (and familiar) result that is used constantly:

Theorem 4.5 (Extreme-value theorem). Let X be a compact
subspace of R™. If f : X — R" is continuous, then f(X) is a compact
subspace of R".

In particular, if ¢ : X — R is continuous, then ¢ has a mazimum
value and a minimum value.

Proof. Let {V,} be a collection of open sets of R™ that covers f(X).
The sets f~!(V,) form an open covering of X. Hence some finitely many of
them cover X, say for @ = aj,...,a;. Then the sets V, for @ = a1,...,a;
cover f(X). Thus f(X) is compact.

Now if ¢ : X — R is continuous, ¢(X) is compact, so it has a largest
element and a smallest element. These are the maximum and minimum values

ofp. O
Now we prove a result that may not be so familiar.

Definition. Let X be a subset of R®. Given € > 0, the union of the
sets B(a;¢€), as a ranges over all points of X, is called the ¢-neighborhood
of X in the euclidean metric. Similarly, the union of the sets C'(a;€) is called
the e-neighborhood of X in the sup metric.

Theorem 4.6 (The e-neighborhood theorem). Let X be a com-
pact subspace of R™; let U be an open set of R"containing X. Then
there is an € > 0 such that the e-neighborhood of X (in either metric)
is contained in U.

Proof. The e-neighborhood of X in the euclidean metric is contained in
the e-neighborhood of X in the sup metric. Therefore it suffices to deal only
with the latter case.

Step 1. Let C be a fixed subset of R™. For each x € R", we define
d(x,C)=inf{|x—c|;c € C}.
We call d(x,C) the distance from x to C'. We show it is continuous as a
function of x:

Let ¢ € C; let x,y € R™. The triangle inequality implies that

d(x,C)= |x—y| < |x=c| = |x-y| < |y—cl.
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This inequality holds for all ¢ € C; therefore
d(x,C) - |x—y| < d(y,C),

so that
d(x,C)-d(y,C) < |x -yl

The same inequality holds if x and y are interchanged; continuity of d(x,C)
follows.

Step 2. We prove the theorem. Given U, define f : X — R by the
equation

f(x) =d(x,R" = U).

Then f is a continuous function. Furthermore, f(x) > 0 for allx € X. For if
x € X, then some é-neighborhood of x is contained in U, whence f(x) > 4.
Because X is compact, f has a minimum value €. Because f takes on only
positive values, this minimum value is positive. Then the €-neighborhood
of X is contained in U. O

This theorem does not hold without some hypothesis on the set X. If X
is the z-axis in R2, for example, and U is the open set

U={(zyly’ <1/0+zD)},

then there is no € such that the e-neighborhood of X is contained in U. See
Figure 4.2.

Figure 4.2

Here is another familiar result.
Theorem 4.7 (Uniform continuity). Let X be a compact subspace

of R™; let f : X — R"™ be continuous. Given ¢ > 0, there isa é > 0
such that whenever x,y € X,

Ix—y| <6 implies |f(x)—f(¥)] <e.
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This result also holds if one uses the euclidean metric instead of the
sup metric.

The condition stated in the conclusion of the theorem is called the con-
dition of uniform continuity.

Proof. Consider the subspace X x X of R™ x R™; and within this,
consider the space

A={(xx)[x €eX},

which is called the diagonal of X x X. The diagonal is a compact subspace
of R?™ since it is the image of the compact space X under the continuous
map f(x) = (x, x).

We prove the theorem first for the euclidean metric. Consider the function
g : X x X — R defined by the equation

9(,y) = || f(x) - f()II-

Then consider the set of points (x,y) of X x X for which g(x,y) < €.
Because ¢ is continuous, this set is an open set of X x X. Also, it contains
the diagonal A, since g(x,x) = 0. Therefore, it equals the intersection with
X x X of an open set U of R™ x R™ that contains A. See Figure 4.3.

(x,y)
(v,¥)
U

L —A

X
Figure 4.3
Compactness of A implies that for some §, the d-neighborhood of A is

contained in U. This is the 4 required by our theorem. For if x,y € X with
||x=y]|| <9, then

H6y) =@ =llx-y,0 = |Ix-yl| <4,

so that (x,y) belongs to the §-neighborhood of the diagonal A. Then (x,y)
belongs to U, so that g(x,y) < €, as desired.
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The corresponding result for the sup metric can be derived by a similar
proof, or simply by noting that if [x—y | < §/\/n, then || x—y || < §, whence

1 fx) - F 1 <N f)-Ffli<e O

To complete our characterization of the compact subspaces of R?, we need
the following lemma:

Lemma 4.8. The rectangle
Q =[a1,b1] x -+ - x [ambn]
in R® s compact.

Proof. We proceed by induction on n. The lemma is true for n = 1; we
suppose it true for n — 1 and prove it true for n. We can write

Q=X x[an,b],

where X is a rectangle in R®~!. Then X is compact by the induction hy-
pothesis. Let A be an open covering of Q.

Step 1. We show that given t € [a,,b,], there is an € > 0 such that the
set
Xx(t—¢€t+e)

can be covered by finitely many elements of A.

The set X x t is a compact subspace of R?, for it is the image of X under
the continuous map f : X — R™ given by f(x) = (x,?). Therefore it may be
covered by finitely many elements of A, say by Ai,..., Ax.

Let U be the union of these sets; then U is open and contains X x ¢. See
Figure 4.4.

bn ——————] U
‘ Cr777ﬂ777777ﬂ7;>/
—X x 1
An
| X
Figure 4.4

Because X xt is compact, there is an € > 0 such that the e-neighborhood
of X x t is contained in U. Then in particular, the set X x (1 — €, +¢€) is
contained in U, and hence is covered by Ay,..., Ax.
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Step 2. By the result of Step 1, we may for each ¢ € [an,b,] choose an
open interval V; about t, such that the set X x V; can be covered by finitely
many elements of the collection A.

Now the open intervals V; in R cover the interval [a,, b,]; hence finitely
many of them cover this interval, say for t = 1,...,{n.

Then = X x [an,b,] is contained in the union of the sets X x V;
for t = t,...,t,; since each of these sets can be covered by finitely many
elements of .4, so may ¢ be covered. O

Theorem 4.9. If X is a closed and bounded subspace of R*, then
X is compact.

Proof. Let A be a collection of open sets that covers X. Let us adjoin
to this collection the single set R™ — X, which is open in R® because X is
closed. Then we have an open covering of all of R*. Because X is bounded,
we can choose a rectangle ¢J that contains X ; our collection then in particular
covers (.

Since () is compact, some finite subcollection covers €. If this finite
subcollection contains the set R® — X, we discard it from the collection. We
then have a finite subcollection of the collection A; it may not cover all of @,
but it certainly covers X, since the set R” — X we discarded contains no point
of X. 0O

All the theorems of this section hold if R® and R™ are replaced by ar-
bitrary metric spaces, except for the theorem just proved. That theorem
does not hold in an arbitrary metric space; see the exercises.

Connected spaces

If X is a metric space, then X is said to be connected if X cannot be
written as the union of two disjoint non-empty sets A and B, each of which
is open in X.

The following theorem is always proved in a first course in analysis, so
the proof will be omitted here:

Theorem 4.10.  The closed interval [a,b] of R™ is connected. O

The basic fact about connected spaces that we shall use is the following:

Theorem 4.11 (Intermediate-value theorem). Let X be con-
nected. If f : X =Y is continuous, then f(X) is a connected subspace
of Y.

In particular, if ¢ : X — R is continuous and if f(z0) < r < f(x1)
for some points xo,x, of X, then f(z) =r for some point z of X.
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Proof. Suppose f(X)= AU B, where A and B are disjoint sets open
in f(X). Then f~!(A) and f~1(B) are disjoint sets whose union is X, and
each is open in X because f is continuous. This contradicts connectedness
of X.

Given ¢, let A consist of all ¥ in R with y < 7, and let B consist of all y
with ¥ > r. Then A and B are open in R; if the set f(X) does not contain 7,
then f(X) is the union of the disjoint sets f(X)N A and f(X)N B, each of
which is open in f(X). This contradicts connectedness of f(X). O

If a and b are points of R™, then the line segment joining a and b is
defined to be the set of all points x of the form x = a + {(b — a), where
0 <1 < 1. Any line segment is connected, for it is the image of the interval
[0,1] under the continuous map ¢t — a + (b — a).

A subset A of R” is said to be convex if for every pair a,b of points of
A, the line segment joining a and b is contained in A. Any convex subset A
of R” is automatically connected: For if A is the union of the disjoint sets U
and V, each of which is open in A, we need merely choose a in U and b in
V', and note that if L is the line segment joining a and b, then the sets UNL
and V N L are disjoint, non-empty, and oper in L.

It follows that in R™ all open balls and open cubes and rectangles are
connected. (See the exercises.)

EXERCISES

1. Let R, denote the set of positive real numbers.

(a) Show that the continuous function f : R, — R given by f(z) =
1/(1+z) is bounded but has neither a maximum value nor a minimum
value.

(b) Show that the continuous function g : R, — R given by g(z) =
sin(1/z) is bounded but does not satisfy the condition of uniform
continuity on R;.

2. Let X denote the subset (—1,1) x 0 of R?, and let U be the open ball
B(0;1) in R?, which contains X. Show there is no € > 0 such that the
e-neighborhood of X in R™ is contained in U.

3. Let R* be the set of all “infinite-tuples” x = (21, 3, ...) of real numbers
that end in an infinite string of 0’s. (See the exercises of § 1.} Define
an inner product on R® by the rule (x,y) = Zz;y;. (This is a finite
sum, since all but finitely many terms vanish.) Let ||x — y|| be the
corresponding metric on R®. Define

e, =(0,...,0,1,0,...,0,...),

where 1 appears in the " place. Then the e; form a basis for R®. Let X
be the set of all the points e;. Show that X is closed, bounded, and
non-compact.
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4. (a) Show that open balls and open cubes in R"are convex.

(b) Show that (open and closed) rectangles in R™ are convex.



Differentiation

In this chapter, we consider functions mapping R™ into R”, and we define
what we mean by the derivative of such a function. Much of our discussion
will simply generalize facts that are already familiar to you from calculus.

The two major results of this chapter are the inverse function theorem,
which gives conditions under which a differentiable function from R™ to R"™ has
a differentiable inverse, and the implicit function theorem, which provides
the theoretical underpinning for the technique of implicit differentiation as
studied in calculus.

Recall that we write the elements of R™ and R™ as column matrices unless
specifically stated otherwise.

§5. THE DERIVATIVE

First, let us recall how the derivative of a real-valued function of a real variable
1s defined.

Let A be a subset of R; let ¢ : A — R. Suppose A contains a neighbor-
hood of the point a. We define the derivative of ¢ at a by the equation

. t) -

H(@) = lim 2O+ =00
t—0 t

provided the limit exists. In this case, we say that ¢ is differentiable at a.

The following facts are an immediate consequence:
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(1) Differentiable functions are continuous.

(2) Composites of differentiable functions are differentiable.

We seek now to define the derivative of a function f mapping a subset of
R™ into R®. We cannot simply replace a and ? in the definition just given by
points of R™, for we cannot divide a point of R® by a point of R™ if m > 1!
Here is a first attempt at a definition:

Definition. Let A C R™; let f : A — R". Suppose A contains a
neighborhood of a. Given u € R™ with u # 0, define

ooy o fattu) - f(a)
f(aju) = lim : ;

provided the limit exists. This limit depends both on a and on u; it is called
the directional derivative of f at a with respect to the vector u. (In
calculus, one usually requires u to be a unit vector, but that is not necessary.)

EXAMPLE 1. Let f:R?> — R be given by the equation
f(z1,z2) = 2122,

The directional derivative of f at a = (a1,a2) with respect to the vector
u=(1,0)is

fl(a; u) — gin(‘) (al + t)at2 — 102 = a,.

With respect to the vector v = (1,2), the directional derivative is

flav) = lim o+ e :_ L az +2a;.

It is tempting to believe that the “directional derivative” is the appropri-
ate generalization of the notion of “derivative,” and to say that f is differen-
tiable at a if f/(a;u) exists for every u # 0. This would not, however, be a
very useful definition of differentiability. It would not follow, for instance, that
differentiability implies continuity. (See Example 3 following.) Nor would it
follow that composites of differentiable functions are differentiable. (See the
exercises of § 7.) So we seek something stronger.

In order to motivate our eventual definition, let us reformulate the defi-
nition of differentiability in the single-variable case as follows:

Let A be a subset of R; let ¢ : A — R. Suppose A contains a neighbor-
hood of a. We say that ¢ is differentiable at a if there is a number A such

that
Sar=S=N
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The number A, which is unique, is called the derivative of ¢ at @, and denoted
#(a).

This formulation of the definition makes explicit the fact that if ¢ is differ-
entiable, then the linear function At is a good approximation to the “increment
function” ¢(a + t) — p(a); we often call At the “first-order approximation” or
the “linear approximation” to the increment function.

Let us generalize this version of the definition. f ACR™ andif f: A —
R", what might we mean by a “first-order” or “linear” approximation to the
increment function f(a + h) — f(a)? The natural thing to do is to take a
function that is linear in the sense of linear algebra. This idea leads to the
following definition:

Definition. Let A C R™, let f : A — R™. Suppose A contains a
neighborhood of a. We say that f is differentiable at a if there is an n by
m matrix B such that

fa+h)— f(a)- B-h

0 — 0.
b — as h—o0

The matrix B, which is unique, is called the derivative of f at a; it is denoted

Df(a).

Note that the quotient of which we are taking the limit is defined for h
in some deleted neighborhood of 0, since the domain of f contains a neigh-
borhood of a. Use of the sup norm in the denominator is not essential; one
obtains an equivalent definition if one replaces |h| by || h|].

It is easy to see that B is unique. Suppose C is another matrix satisfying
this condition. Subtracting, we have

(C-B)-h

—0
|h|

as h — 0. Let u be a fixed vector; set h = tu; let £ — 0. It follows that
(C = B) -u = 0. Since u is arbitrary, C = B.

EXAMPLE 2. Let f: R™ — R"” be defined by the equation
f(x)=B-x+b,

where B is an n by m matrix, and b € R®. Then f is differentiable and
Df(x) = B. Indeed, since

flat+h)-f(a)=B"h,

the quotient used in defining the derivative vanishes identically.
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We now show that this definition is stronger than the tentative one we
gave earlier, and that it is indeed a “suitable” definition of differentiability.
Specifically, we verify the following facts, in this section and those following:

(1) Differentiable functions are continuous.
(2) Composites of differentiable functions are differentiable.

(3) Differentiability of f at a implies the existence of all the directional
derivatives of f at a.

We also show how to compute the derivative when it exists.

Theorem 5.1. Let A C R™; let f : A — R". If f is differentiable
at a, then all the directional derivatives of f at a exist, and

f'(a;u) = Df(a) - u.
Proof. Let B = D f(a). Set h = tu in the definition of differentiability,
where t # 0. Then by hypothesis,

¥ fostn)fe)-Botu g

ast — 0. If t approaches 0 through positive values, we multiply (*) by |u| to
conclude that .

fatt)=f@ ., g
as t — 0, as desired. If t approaches 0 through negative values, we multiply
(*) by —|u] to reach the same conclusion. Thus f'(a;u) = B-u. O

EXAMPLE 3. Define f : R> — R by setting f(0) =0 and
flz,y) =2"y/(x" +9°) if (z,9) #0.

We show all directional derivatives of f exist at 0, but that f is not differen-
tiable at 0. Let u # 0. Then

f(O+1tu) - f(0) _ (th)’(tk) 1 if u= [h]
: (th) + (k) T k
__hk
= ht n 52’
so that

oy — LRk ifk#£0,
f(o’u)_{o if k=0
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Thus f'(0; u) exists for all u # 0. However, the function f is not differentiable
at 0. For if g : R* — R is a function that is differentiable at 0, then Dg(0) is
a 1 by 2 matrix of the form [a b], and

g'(0;u) = ah + bk,

which is a linear function of u. But f'(0;u) is not a linear function of u.

The function f is particularly interesting. It is differentiable (and hence
continuous) on each straight line through the origin. (In fact, on the straight
line y = mz, it has the value mz/(m? + z2).) But f is not differentiable at
the origin; in fact, f is not even continuous at the origin! For f has value 0
at the origin, while arbitrarily near the origin are points of the form (¢, 2), at
which f has value 1/2. See Figure 5.1.

\ A =172
/

N\ Z

Figure 5.1

Theorem 5.2. Let ACR™; let f: A — R* If fis differentiable
at a, then f is continuous at a.

Proof. Let B = Df(a). For h near 0 but different from 0, write

flasw) - (o) = oy [ T@ T2 g,

By hypothesis, the expression in brackets approaches 0 as h approaches 0.
Then, by our basic theorems on limits,

lim([f(a +h) - f(a)] = 0.
Thus f is continuous at a. O
We shall deal with composites of differentiable functions in § 7.

Now we show how to calculate D f(a), provided it exists. We first intro-
duce the notion of the “partial derivatives” of a real-valued function.
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Definition. Let A C R™; let f : A — R. We define the j*! partial
derivative of f at a to be the directional derivative of f at a with respect
to the vector e;, provided this derivative exists; and we denote it by D; f(a).

That is,
D;f(a) = lim(f(a +te;) - f(a)) /2.

Partial derivatives are usually easy to calculate. Indeed, if we set

¢(t) = f(alv-"aaj—lataaj+17~~-7am)’

then the j*™ partial derivative of f at a equals, by definition, simply the
ordinary derivative of the function ¢ at the point t = a;. Thus the partial
derivative D; f can be calculated by treating Z1,...,%j-1,Zj+15..-,Tm 38
constants, and differentiating the resulting function with respect to z;, using
the familiar differentiation rules for functions of a single variable.

We begin by calculating the derivative c$ f in the case where f is a
real-valued function.

Theorem 5.3. Let A C R™; let f: A — R. If f is differentiable

at a, then
Df(a) =[Dif(a) D:f(a) -+ Dmf(a)).

That is, if D f(a) exists, it is the row matrix whose entries are the partial
derivatives of f at a.

Proof. By hypothesis, D f(a) exists and is a matrix of size 1 by m. Let

Df(a) =[A1 Az -+ Aml-

It follows (using Theorem 5.1) that

Djf(a) = f'(a;e;) = Df(a)-e; = A;. O

We generalize this theorem as follows:

Theorem 5.4. Let AC R™; let f: A — R". Suppose A contains
a neighborhood of a. Let f; : A — R be the ™ component function of f,
so that
fi(x)
fx=1 :
Ja(x)
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() The function f is differentiable at a if and only if each component
function f; is differentiable at a.

(b) If f is differentiable at a, then its derivative is the n by m matriz
whose " row is the derivative of the function f;.

This theorem tells us that

Dfi(a)
Df(a) = »
Dfn(a)

so that D f(a) is the matrix whose entry in row % and column j is D; fi(a).

Proof. Let B be an arbitrary n by m matrix. Consider the function

Fn) = L2110 _II{ I(a) — b

which is defined for 0 < |h| < € (for some €). Now F'(h) is a column matrix
of size n by 1. Its #*® entry satisfies the equation

_ fila+h)— fi(a) — (rowiof B)-h
|h| '

Fi(h)

Let h approach 0. Then the matrix F'(h) approaches 0 if and only if each of
its entries approaches 0. Hence if B is a matrix for which F'(h) — 0, then the
i*" row of B is a matrix for which F;(h) — 0. And conversely. The theorem

follows. O

Let AC R™ and f: A — R". If the partial derivatives of the component
functions f; of f exist at a, then one can form the matrix that has D; f;(a) as
its entry in row ¢ and column j. This matrix is called the Jacobian matrix
of f. If f is differentiable at a, this matrix equals D f(a). However, it is
possible for the partial derivatives, and hence the Jacobian matrix, to exist,
without it following that f is differentiable at a. (See Example 3 preceding.)

This fact leaves us in something of a quandary. We have no convenient way
at present for determining whether or not a function is differentiable (other
than going back to the definition). We know that such familiar functions as

sin(zy) and zy?+ ze®
have partial derivatives, for that fact is a consequence of familiar theorems

from single-variable analysis. But we do not know they are differentiable.
We shall deal with this problem in the next section.
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REMARK. If m = 1 or n = 1, our definition of the derivative is simply
a reformulation, in matrix notation, of concepts familiar from calculus. For
instance, if f : R! — R®is a differentiable function, its derivative is the column
matrix ,
fi(?)
Df(t)= | f2(?)
fa(®)

In calculus, f is often interpreted as a parametrized-curve, and the vector
7= fi(t)e: + fi(t)ez + fa(t)es

is called the velocity vector of the curve. (Of course, in calculus one is apt to

use 7, J, and k for the unit basis vectors in R® rather than e;,e2, and e3.)
For another example, consider a differentiable function g : R® — R Its
derivative is the row matrix

Dg(x) = [D1g(x) D:g(x) Dsg(x)],

and the directional derivative equals the matrix product Dg(x)-u. In calculus,
the function g is often interpreted as a scalar field, and the vector field

grad g = (Dig)e: + (D2g)e2 + (Dsg)es

is called the gradient of g. (It is often denoted by the symbol Vg.) The
directional derivative of g with respect to u is written in calculus as the dot
product of the vectors grad g and u.

Note that vector notation is adequate for dealing with the derivative of
f when either the domain or the range of f has dimension 1. For a general
function f:R™ — R™, matrix notation is needed.

EXERCISES

1. Let AC R™;let f: A — R™. Show that if f'(a;u) exists, then f'(a;cu)
exists and equals cf'(a; u).

2. Let f : R? - R be defined by setting f(0) = 0 and

f(z,y) =zy/ (x> +y°) if (z,y) #0.

(a) For which vectors u # 0 does f'(0;u) exist? Evaluate it when it
exists.

(b) Do Dy f and D:f exist at 07
(c) Is f differentiable at 07
(d) Is f continucus at 07
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3. Repeat Exercise 2 for the function f defined by setting f(0) = 0 and
fl@,y) =2 /@Y +(y-2)") if (z,y) #0.
4. Repeat Exercise 2 for the function f defined by setting f(0) = 0 and
flz,y) =2/ +¢") if (z,y) #0.
5. Repeat Exercise 2 for the function
flz,y) =lz|+lyl
6. Repeat Exercise 2 for the function
f(z,y) =y '

7. Repeat Exercise 2 for the function f defined by setting f(0) = 0 and

fe,y)=zlyl/(@*+ /) if (z,y)#0.
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In this section, we obtain a useful criterion for differentiability. We know that
mere ezistence of the partial derivatives does not imply differentiability. If,
however, we impose the (comparatively mild) additicnal condition that these
partial derivatives be continuous, then differentiability is assured.

We begin by recalling the mean-value theorem of single-variable analysis:

Theorem 6.1 (Mean-value theorem). If¢:[a,b] — R is continu-
ous at each point of the closed interval [a,b], and differentiable at each
point of the open interval (a,b), then there ezists a point ¢ of (a,b)

such that
d(b) — Pa) = P'(c)(b-a). O

In practice, we most often apply this theorem when ¢ is differentiable on
an open interval containing [a,b]. In this case, of course, ¢ is continuous on

[a,0].
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Theorem 6.2. Let A be open in R™. Suppose that the partial
derivatives D; f;(x) of the component functions of f exist at each point
x of A and are continuous on A. Then f is differentiable at each point
of A.

A function satisfying the hypotheses of this theorem is often said to be
continuously differentiable, or of class C 1 on A.

Proof. In view of Theorem 5.4, it suffices to prove that each component
function of f is differentiable. Therefore we may restrict ourselves to the case
of a real-valued function f: A — R.

Let a be a point of A. We are given that, for some ¢, the partial derivatives
D; f(x) exist and are continuous for |[x — a| < €. We wish to show that fis
differentiable at a.

Step 1. Let h be a point of R™ with 0 < |h| < € let hy, ... s hm be the
components of h. Consider the following sequence of points of R™:

Po=a,
p1 = a+ hiey,
p2 = a+ hie; + hsey,

Pm=8+h191+"~+hmem=a+h-

The points p; all belong to the (closed) cube C' of radius |h| centered at a.
Figure 6.1 illustrates the case where m = 3 and all h; are positive.

""" A

S //=
L/——L _____ < |pPa=a+ h
Y ———— ——

=a
Vs /
/
D1 P2
Figure 6.1

Since we are concerned with the differentiability of f, we shall need to
deal with the difference f(a + h) — f(a). We begin by writing it in the form

(*) fa+h)— f(a) = > [f(pj) = f(@i-1))-

i=1
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Consider the general term of this summation. Let j be fixed, and define

o(t) = f(j-1 + tej).

Assume h; # 0 for the moment. As ¢ ranges over the closed interval I with
end points 0 and h;, the point p;_; + te; ranges over the line segment from
P;j-1 to pj; this line segment lies in C, and hence in A. Thus ¢ is defined for
t in an open interval about I.

As t varies, only the j*h component of the point Pj-1 +te] varies. Hence
because D; f exists at each point of A, the function ¢ is differentiable on
an open mterval containing 1. Applylng the mean-value theorem to ¢, we

conclude that
@(h;) — ¢(0) = ¢'(c;)h;

for some point ¢; between 0 and h;. (This argument applies whether h; is
positive or negative.) We can rewnte this equation in the form

(#*) f(p;i) = f(pi-1) = D; f(a;)h;,

where q ; is the point p;j_; + ¢;je; of the line segment from pPj—1 to pj, which
lies in C.

We derived () under the assumption that h; # 0. If h; = 0, then (*+)
holds automatically, for any point q; of C.

Using (%), we rewrite (*) in the form

(% + %) fa+h) - f(a) =" D;f(a;)h;,
j=1

where each point q; lies in the cube C of radius |h| centered at a.

Step 2. We prove the theorem. Let B be the matrix

=[D1f(a) --- Dmf(a)].
Then o
B-h= Z D; f(a)h;.

Using (* * *), we have

f(a+h)— f(a) - i[Df(qJ) D; f(a)lh;

{h| {h|

then we let h — 0. Since q; lies in the cube C of radius |h| centered at a,
we have q; — a. Since the partials of f are continuous at a, the factors in
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brackets all go to zero. The factors h;/|h| are of course bounded in absolute
value by 1. Hence the entire expression goes to zero, as desired. 0O

One effect of this theorem is to reassure us that the functions familiar to us
from calculus are in fact differentiable. We know how to compute the partial
derivatives of such functions as sin(zy) and zy? + ze*¥, and we know that
these partials are continuous. Therefore these functions are differentiable.

In practice, we usually deal only with functions that are of class C''. While
it is interesting to know there are functions that are differentiable but not of
class C1, such functions occur rarely enough that we need not be concerned
with them.

Suppose f is a function mapping an open set A of R™ into R", and suppose
the partial derivatives D; f; of the component functions of f exist on A. These
then are functions from A to R, and we may consider their partial derivatives,
which have the form Dy(D; f;) and are called the second-order partial
derivatives of f. Similarly, one defines the third-order partial derivatives
of the functions f;, or more generally the partial derivatives of order r for
arbitrary r.

If the partial derivatives of the functions fi of order less than or equal
to r are continuous on A, we say f is of class C” on A. Then the function f
is of class C™ on A if and only if each function D; f; is of class Cr1! on A.
We say f is of class C*™ on A if the partials of the functions fi of all orders
are continuous on A.

As you may recall, for most functions the “mixed” partial derivatives

Dijf,' and DjDkf,'

are equal. This result in fact holds under the hypothesis that the function f
is of class C?, as we now show.

Theorem 6.3. Let A be open in R™; let f : A — R be a function
of class C?. Then for each a € A,

DiD;f(a) = D; Dif(a).

Proof. Since one calculates the partial derivatives in question by letting
all variables other than z; and z; remain constant, it suffices to consider the
case where f is a function merely of two variables. So we assume that A is
open in R2, and that f: A — R? is of class C?.

Step 1. We first prove a certain “second-order” mean-value theorem
for f. Let
Q=[a, a+h] x[b, b+
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be a rectangle contained in A. Define
A(h,k) = f(a,b) - f(a+h,b) — f(a,b+ k) + f(a+h,b+k).

Then A is the sum, with appropriate signs, of the values of f at the four
vertices of (). See Figure 6.2. We show that there are points p and q of Q

such that
A(h,k) = DyD; f(p) - hk, and

b+ke

L 4
[
[

Figure 6.2

By symmetry, it suffices to prove the first of these equations. To begin,

we define
(}5(8) = f(37b+ k) - f(S,b)

Then ¢(a + h) — ¢(a) = A(h, k), as you can check. Because D, f exists in A,
the function ¢ is differentiable in an open interval containing [a,a + h]. The
mean-value theorem implies that

$(a+h) - ¢(a) = ¢/(s0) - h
for some sy between a and @ + h. This equation can be rewritten in the form
(%) Ah, k) = [D1f(s0,b+ k) ~ D1f(50,0)) - h.
Now s 1s fixed, and we consider the function D, f(s¢,t). Because D, D, f

exists in A, this function is differentiable for £ in an open interval about
[b,b+ k). We apply the mean-value theorem once more to conclude that

(**) D1f(s0,b+k) — D1f(s0,b) = D3 D f(s0,t0) - k
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for some o between b and b + k. Combining (x) and (*#) gives our desired
result.

Step 2. We prove the theorem. Given the point a = (a,b) of A and
given t > 0, let @, be the rectangle

Q: = [a7a +t] x [b7b+ t]°
If t is sufficiently small, Q is contained in A; then Step 1 implies that
/\(t, t) = Dlef(pg) . tz

for some point py in Q;. If we let t — 0, then p; — a. Because D,D,fis
continuous, it follows that

A(t,t)/t> — D, D f(a) as t—0.
A similar argument, using the other equation from Step 1, implies that
At,1)/t? — D1 Dyf(a) as t—0.

The theorem follows. O

EXERCISES

1. Show that the function f(z,y) = |zy| is differentiable at 0, but is not of
class C! in any neighborhood of 0.
2. Define f : R — R by setting f(0) =0, and

f(t) =t*sin(1/t) if t#£0.

(a) Show f is differentiable at 0, and calculate f'(0).

(b) Calculate f'(t)if t #0.

(c) Show f’is not continuous at 0.

(d) Conclude that f is differentiable on R but not of class C' on R.

3. Show that the proof of Theorem 6.2 goes through if we assume merely
that the partials D; f exist in a neighborhood of a and are continuous
at a.

4. Show that if A CR™ and f: A — R, and if the partials D, f exist and
are bounded in a neighborhood of a, then f is continuous at a.

5. Let f : R? — R? be defined by the equation
f(r,0) = (rcosf,rsind).

It is called the polar coordinate transformation.
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(a) Calculate Df and det Df.
(b) Sketch the image under f of the set S =[1,2] x [0, x]. [Hint: Find
the images under f of the line segments that bound 5]

. Repeat Exercise 5 for the function f : R? — R? given by

f(l',y)=(1'2—y2,21'y)-
Take S to be the set
S={(z,y)|2*+y* <a® and >0 and y>0}.

[Hint: Parametrize part of the boundary of S by setting £ = acost and
Yy = asint; find the image of this curve. Proceed similarly for the rest of
the boundary of S.}

We remark that if one identifies the complex numbers C with R® in
the usual way, then f is just the function f(z) = 2°.

. Repeat Exercise 5 for the function f: R? — R? given by

f(z,y) = (" cosy, e” siny).

Take S to be the set S =[0,1] x [0, 7).
We remark that if one identifies C with R? as usual, then f is the
function f(z) = e*.

. Repeat Exercise 5 for the function f : R®> — R® given by

f(p,9,08) = (pcosfsin ¢, psinfsin @, pcos ).

It is called the spherical coordinate transformation. Take S to be
the set
S =[1,2] x [0, 7/2] x [0,7/2).

. Let g : R — R be a function of class C*. Show that

. glat+h)—29(a)+gla—h) _
fim h? =g (a).
[Hint: Consider Step 1 of Theorem 6.3 in the case f(z,y) = g(z + y).]
Define f : R — R by setting f(0) = 0, and

f@,y)=zy(@® - )/ (@ +7) if (z,9)#0.
(a) Show D, f and D, f exist at 0.

(b) Calculate Dy f and D, f at (x,y) # 0.

(c) Show f isof class C? on R%. [Hint: Show D f(z,y) equals the prod-
uct of ¥y and a bounded function, and D; f(z,y) equals the product
of £ and a bounded function.]

(d) Show that D, D, f and D; D, f exist at 0, but are not equal there.
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THE CHAIN RULE

In this section we show that the composite of two differentiable functions
is differentiable, and we derive a formula for its derivative. This formula is
commonly called the “chain rule.”

Theorem 7.1. Let ACR™; let BCR". Let
f:A—-R" and g:B—RP,

with f(A) C B. Suppose f(a) = b. If f is differentiable at a, and if g
is differentiable at b, then the composite function go f is differentiable
at a. Furthermore,

D(g o f)(a) = Dg(b) - Df(a),
where the indicated product is matriz multiplication.

Although this version of the chain rule may look a bit strange, it is really
just the familiar chain rule of calculus in a new guise. You can convince
yourself of this fact by writing the formula out in terms of partial derivatives.
We shall return to this matter later.

Proof. For convenience, let x denote the general point of R™, and let y
denote the general point of R™.

By hypothesis, g is defined in a neighborhood of b; choose € so that a(y)
is defined for |y — b| < €. Similarly, since f is defined in a neighborhood of a
and is continuous at a, we can choose é so that f(x) is defined and satisfies
the condition |f(x) — b} < €, for |x — a|] < §. Then the composite function
(g0 f)(x) = g(f(x)) is defined for |x —a| < é. See Figure 7.1.

el

61 _

x€ER™

4
v ER" z€R

Figure 7.1
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Step 1. Throughout, let A(h) denote the function
A(h) = f(a+h) - f(a),

which is defined for |h| < §. First, we show that the quotient |A(h)|/|h]| is
bounded for h in some deleted neighborhood of 0.

For this purpose, let us introduce the function F'(h) defined by setting
F(0)=10 and

[A(h) — Df(a) - b

F(h) = b

for 0< |h|<é.

Because f is differentiable at a, the function F’ is continuous at 0. Further-
more, one has the equation

(%) A(h)=Df(a)-h+ |h|F(h)

for 0 < |h| < 4, and also for h = 0 (trivially). The triangle inequality implies
that
|A(h)| < m|Df(a)| h| + |h|[F(h)].

Now |F'(h)] is bounded for h in a neighborhood of 0; in fact, it approaches 0
as h approaches 0. Therefore |A(h)|/ |h| is bounded on a deleted neighbor-
hood of 0.

Step 2. We repeat the construction of Step 1 for the function g. We
define a function G'(k) by setting G(0) = 0 and

Gx) = 4Bk - g(ltl) — Dg(b) -k

for 0<|k|<e

Because g is differentiable at b, the function G is continuous at 0. Further-
more, for k| < ¢, G satisfies the equation

(%) g(b +k) — g(b) = Dg(b) - k + k|G(k).

Step 3. We prove the theorem. Let h be any point of R™ with |h| < 6.
Then |A(h)| < €, so we may substitute A(h) for k in formula (**). After this
substitution, b + k becomes

b + A(h) = f(a) + A(h) = f(a+h),

so formula (*#) takes the form

9(f(a+h)) - g(f(a)) = Dg(b) - A(h) +|A(L)|G(A(h)).
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Now we use (*) to rewrite this equation in the form

1

Ih| (f(a+h)) —g(f(a)) - Dg(b)- Df(a) - h]
1

= Dg(b) - F(h)+ 17 | AWIG(A®))-

This equation holds for 0 < |h| < 6. In order to show that go f is differentiable
at a with derivative Dg(b) - D f(a), it suffices to show that the right side of
this equation goes to zero as h approaches 0.

The matrix Dg(b) is constant, while F'(h) — 0 as h — 0 (because F’
is continuous at 0 and vanishes there). The factor G(A(h)) also approaches
zero as h — 0; for it is the composite of two functions G and A, both of
which are continuous at 0 and vanish there. Finally, |A(h)|/ |h| is bounded
in a deleted neighborhood of 0, by Step 1. The theorem follows. O

Here is an immediate consequence:
Corollary 7.2. Let A be open in R™; let B be open in R*. Let
f:A—=R"* and g:B —RP,

with f(A) C B. If f and g are of class C7, so is the composite function
gof.

Proof. The chain rule gives us the formula
D(g o f)(x) = Dg(f(x)) - D f(x),

which holds for x € A.

Suppose first that f and g are of class C'!. Then the entries of Dg are
continuous real-valued functions defined on B; because f is continuous on
A, the composite function Dg (f(x)) is also continuous on A. Similarly, the
entries of the matrix D f(x) are continuous on A. Because the entries of the
matrix product are algebraic functions of the entries of the matrices involved,
the entries of the product Dg(f(x)) - D f(x) are also continuous on A. Then
go fis of class C! on A.

To prove the general case, we proceed by induction. Suppose the theorem
is true for functions of class C™~!. Let f and ¢ be of class C". Then the
entries of Dg are real-valued functions of class C"~! on B. Now f is of class
C™! on A (being in fact of class C ); hence the induction hypothesis implies
that the function D;g;(f(x)), which is a composite of two functions of class
Cr=1,is of class C™~!. Since the entries of the matrix D f(x) are also of class
C™ ! on A by hypothesis, the entries of the product Dg(f(x)) - D f(x) are
of class C™~! on A. Hence go f is of class C" on A, as desired.
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The theorem follows for r finite. If now f and g are of class C'®, then they
are of class C™ for every r, whence g o f is also of class C” for every r. [

As another application of the chain rule, we generalize the mean-value
theorem of single-variable analysis to real-valued functions defined in R™. We
will use this theorem in the next section.

Theorem 7.3 (Mean-value theorem). Let A be open in R™; let
[ : A — R be differentiable on A. If A contains the line segment with
end points a and a+ h, then there is a point ¢ = a+toh with 0 < ¢y, < 1
of this line segment such that

fla+h) - f(a)=Df(c) h.

Proof. Set ¢(t) = f(a+ th); then ¢ is defined for ¢ in an open interval
about [0,1]. Being the composite of differentiable functions, ¢ is differentiable;
its derivative is given by the formula

¢'(t) = Df(a+th)-h.
The ordinary mean-value theorem implies that
8(1)— $(0) = ¢'(t0) - 1
for some ¢p with 0 < ?p < 1. This equation can be rewritten in the form

f(a+h)- f(a)=Df(a+teh)-h. O

As yet another application of the chain rule, we consider the problem of
differentiating an inverse function.

Recall the situation that occurs in single-variable analysis. Suppose ¢(z)
is differentiable on an open interval, with ¢/(z) > 0 on that interval. Then ¢
is strictly increasing and has an inverse function %, which is defined by letting
¥(y) be that unique number z such that ¢(z) = y. The function % is in fact
differentiable, and its derivative satisfies the equation

Y(y)=1/4' (=),

where y = ¢(x).

There is a similar formula for differentiating the inverse of a function f
of several variables. In the present section, we do not consider the question
whether the function f hasan inverse, or whether that inverse is differentiable.
We consider only the problem of finding the derivative of the inverse function.
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Theorem 7.4. Let A be open in R*; let f: A — R"; let f(a) =Db.
Suppose that g maps a neighborhood of b into R*, that g(b) = a, and

9(f(x)) =x

for all x in a neighborhood of a. If f is differentiable at a and if g is
differentiable at b, then

Dg(b) = [Df(a)]™".

Proof. Let i : R® — R™ be the identity function; its derivative is the
identity matrix I,,. We are given that

9(f(x)) =i(x)
for all x in a neighborhood of a. The chain rule implies that
Dg(b)- Df(a) = I,.
Thus Dg(b) is the inverse matrix to D f(a) (see Theorem 2.5). [

The preceding theorem implies that if a differentiable function fisto have
a differentiable inverse, it is necessary that the matrix D f be non-singular.
It is a somewhat surprising fact that this condition is also sufficient for a
function f of class C! to have an inverse, at least locally. We shall prove this
fact in the next section.

REMARK. Let us make a comment on notation. The usefulness of well-chosen
notation can hardly be overemphasized. Arguments that are obscure, and
formulas that are complicated, sometimes become beautifully simple once the
proper notation is chosen. Our use of matrix notation for the derivative is a
case in point. The formulas for the derivatives of a composite function and an
inverse function could hardly be simpler.

Nevertheless, a word may be in order for those who remember the notation
used in calculus for partial derivatives, and the version of the chain rule proved
there.

In advanced mathematics, it is usual to use either the functional notation
¢' or the operator notation D¢ for the derivative of a real-valued function
of a real variable. (D¢ denotes a 1 by 1 matrix in this case!) In calculus,
however, another notation is common. One often denotes the derivative ¢'(z)
by the symbol d¢/dz, or, introducing the “variable” y by setting y = (),
by the symbol dy/dz. This notation was introduced by Leibnitz, one of
the originators of calculus. It comes from the time when the focus of every
physical and mathematical problem was on the variables involved, and when
functions as such were hardly even thought about.



§7.

The Chain Rule

The Leibnitz notation has some familiar virtues. For one thing, it makes
the chain rule easy to remember. Given functions ¢ : R — R and ¥ : R — R,
the derivative of the composite function % o ¢ is given by the formula

D(y 0 ¢)(z) = DY (4(=)) - Dg(x).

If we introduce variables by setting ¥y = ¢(z) and z = t(y), then the derivative
of the composite function z = ¢(¢(1:)) can be expressed in the Leibnitz
notation by the formula

The latter formula is easy to remember because it looks like the formula for
multiplying fractions! However, this notation has its ambiguities. The letter
“z” when it appears on the left side of this equation, denotes one function (a
function of z); and when it appears on the right side, it denotes a different
function (a function of y). This can lead to difficulties when it comes to
computing higher derivatives unless one is very careful.

The formula for the derivative of an inverse function is also easy to re-
member. If y = ¢(x) has the inverse function T = y(y), then the derivative
of ¥ is expressed in Leibnitz notation by the equation

1
d.’L‘/dy = W,

which looks like the formula for the reciprocal of a fraction!

The Leibnitz notation can easily be extended to functions of several vari-
ables. f ACR™ and f: A — R, we often set

y=f(x) = f(xly""xm)y
and denote the partial derivative D; f by one of the symbols

9f
(9.’(:.'

Oy
(9.’(:.‘ ’

or

The Leibnitz notation is not nearly as convenient in this situation. Con-
sider the chain rule, for example. If

f:R"—=R" and ¢:R" =R,

then the composite function F' = go f maps R™ into R, and its derivative is
given by the formula

DF(x) = Dg(f(x)) - Df(x),
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which can be written out in the form
[D)F(x) -+ DmF(x)]

Difi(x) -+ Dmhf(x)
=[Dg(f(x)) - Dag(f(x))]
Difa(x) -+ Dmfa(x)

The formula for the j** partial derivative of F' is thus given by the equa-
tion n
D,;F(x) =Y _ Dig(f(x)) D;fu(x).
k=1

If we shift to “variable” notation by setting y = f(x) and z = g(y), this
equation becomes

9z 2\ 8z Oy

dz, ~ kz_; Oyx Ox;’

this is probably the version of the chain rule you learned in calculus. Only
familiarity would suggest that it is easier to remember than (*)! Certainly
one cannot obtain the formula for 8z/8z; by a simple-minded multiplication
of fractions, as in the single-variable case.

The formula for the derivative of an inverse function is even more trou-
blesome. Suppose f : R? — R? is differentiable and has a differentiable inverse
function g. The derivative of g is given by the formula

Dg(y) = [Df(x)]™".
where y = f(x). In Leibnitz notation, this formula takes the form
O8z1/0y, 8z1/0y2 Oy [0z, Oy /8z2] 7
[0:82/(93/1 0:1:2/03/2] - [83/2/0:81 0y2/6z2] ’
Recalling the formula for the inverse of a matrix, we see that the partial

derivative 0z /8y; is about as far from being the reciprocal of the partial
derivative 0y;/dz: as one could imagine!
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EXERCISES

. Let f :R® — R? satisfy the conditions f(0) = (1,2) and

Df(0) = [(1] z ‘:’] :

Let ¢ : R?* — R? be defined by the equation
9(x,y) = (z + 2y + 1, 3zy).
Find D(go f)(0).

. Let f:R? — R® and ¢ : R® — R? be given by the equations
g

f(x) = (e**1%%2 3z, — cos z1, 2% + T2 + 2),

9(y) = (Byr +2y2 + 15, ¥i — Y +1).
(a) If F(x) = g(f(x)), find DF(0). [Hint: Don’t compute F explicitly.]
(b) If G(y) = f(9(y)), find DG(0).

. Let f : R* = R and g : R? — R be differentiable. Let F : R> — R be

defined by the equation

F(z,y) = f(z,y,9(z,9)).
(a) Find DF in terms of the partials of f and g¢.

(b) If F(z,y) = 0for all (z,y), find D1g and D2g in terms of the partials
of f.

. Let g : R? — R? be defined by the equation g(z,y) = (z,y + z%). Let

f : R? - R be the function defined in Example 3 of § 5. Let h = fog.
Show that the directional derivatives of f and g exist everywhere, but
that there is a u # 0 for which h'(0;u) does not exist.

§8. THE INVERSE FUNCTION THEOREM

Let A be open in R?; let f : A — R” be of class C!. We know that for f
to have a differentiable inverse, it is necessary that the derivative D f(x) of f
be non-singular. We now prove that this condition is also sufficient for f to
have a differentiable inverse, at least locally. This result is called the inverse
function theorem.

We begin by showing that non-singularity of D f implies that f is locally

one-to-one.
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Lemma 8.1. Let A be open in R*; let f : A — R™ be of class C*.
If Df(a) is non-singular, then there erists an o > 0 such that the
inequality

|f(x0) — f(x1)| > a|xo — x1]

holds for all xq,x; in some open cube C(a;€) centered at a. It follows
that f is one-to-one on this open cube.

Proof. Let E = Df(a); then E is non-singular. We first consider the
linear transformation that maps x to E - x. We compute

Ixo —x1| = |[E~* - (E - %0 — E - x1)|
<n|lE7Y - |E-x0— E xi].

If we set 2o = 1/n|E~1|, then for all x¢,x; in R?,
|E -xp — F -x1| > 2a|xo — x1].
Now we prove the lemma. Consider the function
H(x)= f(x)- F-x.

Then DH(x) = D f(x)—E, so that D H (a) = 0. Because H is of class C*, we
can choose € > 0 so that | DH(x)| < a/n for x in the open cube C' = C(a;¢).
The mean-value theorem, applied to the i*P component function of H, tells
us that, given x¢,x; € C, there is a ¢ € C such that

|Hi(x0) — Hi(x1)| = |DHi(c) - (xo = x1)| < n(a/n)|xo — x1|.
Then for xg,x; € C, we have

alxo —x1| > [H(xo) — H(x1)]
=|f(x0) — E-x0— f(x1)+ £ - x4
>|E-x1 — E-xo| = | f(x1) = f(xo0)|
> 2ax1 — xo| ~ | f(x1) = f(x0)I-

The lemma follows. O

Now we show that non-singularity of Df, in the case where f is one-to-
one, implies that the inverse function is differentiable.
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Theorem 8.2. Let A be open in R*; let f: A — R" be of class C*;
let B = f(A). If f is one-to-one on A and if Df(x) is non-singular for
x € A, then the set B is open in R* and the inverse functiong: B — A
is of class CT.

Proof. Step 1. We prove the following elementary result: If ¢: A — R
is differentiable and if ¢ has a local minimum at xo € A, then D¢(xo) = 0.

To say that ¢ has a local minimum at xo means that @¢(x) > ¢(xg) for
all x in a neighborhood of xo. Then given u # 0,

P(xo + tu) — ¢(x0) 2 0

for all sufficiently small values of {. Therefore
&' (xo; ) = lim [$(xo + tu) — $(x0)]/t

is non-negative if ¢t approaches ¢ through positive values, and is non-positive
if ¢ approaches 0 through negative values. It follows that ¢'(xp;u) = 0. In
particular, D;¢(xo) = 0 for all 7, so that D¢(xo) = 0.

Step 2. We show that the set B is open in R*. Given b € B, we show B
contains some open ball B(b;d) about b.

We begin by choosing a rectangle ¢ lying in A whose interior contains
the point a = f~1(b) of A. The set Bd () is compact, being closed and
bounded in R™. Then the set f(Bd () is also compact, and thus is closed and
bounded in R™. Because f is one-to-one, f(Bd Q) is disjoint from b; because
f(Bd Q) is closed, we can choose § > 0 so that the ball B(b;26) is disjoint
from f(Bd@). Given c € B(b;d) we show that ¢ = f(x) for some x € @; it
then follows that the set f(A) = B contains each point of B(b; §), as desired.
See Figure 8.1.

Figure 8.1
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Given ¢ € B(b;d), consider the real-valued function

é(x) = |1 f(x) = eI’

which is of class C7. Because @) is compact, this function has a minimum
value on Q; suppose that this minimum value occurs at the point x of Q. We
show that f(x) = c.

Now the value of ¢ at the point a is

$(a) = |1 f(a) = clf® = |Ib - c]* < 6.

Hence the minimum value of ¢ on Q must be less than §2. It follows that this
minimum value cannot occur on Bd Q, for if x € BdQ, the point f(x) lies
outside the ball B(b;26), so that || f(x) — c|| > 6. Thus the minimum value
of ¢ occurs at a point x of Int Q.

Because x is interior to @, it follows that ¢ has a local minimum at x;
then by Step 1, the derivative of ¢ vanishes at x. Since

n

$(x) = Y (felx) — ),

k=1

Did(x) = 3 2fe(x) - &) D; fix).
k=1

The equation D@(x) = 0 can be written in matrix form as

20(filx) —e1) -+ (fa(x)—¢ca)]- Df(x) =0.

Now D f(x) is non-singular, by hypothesis. Multiplying both sides of this
equation on the right by the inverse of D f(x), we see that f(x) —c =0, as
desired.

Step 3. The function f : A — B is one-to-one by hypothesis; let g :
B — A be the inverse function. We show g is continuous.

Continuity of g is equivalent to the statement that for each open set U of
A, theset V = ¢g~!(U) is open in B. But V = f(U); and Step 2, applied to
the set U, which is open in A and hence open in R", tells us that V is open
in R™ and hence open in B. See Figure 8.2.
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Figure 8.2

It is an interesting fact that the results of Steps 2 and 3 hold without assuming
that D f(x) is non-singular, or even that f is differentiable. If A is open in
R" and f: A — R" is continuous and one-to-one, then it is true that f(A)is
open in R™ and the inverse function ¢ is continuous. This result is known as
the Brouwer theorem on invariance of domain. Its proof requires the tools
of algebraic topology and is quite difficult. We have proved the differentiable
version of this theorem.

Step 4. Given b € B, we show that g is differentiable at b.
Let a be the point g(b), and let £ = D f(a). We show that the function

[9(b+k) —g(b) — E~' - K]
Ik ’
which is defined for k in a deleted neighborhood of 0, approaches 0 as k

approaches 0. Then g is differentiable at b with derivative F-1.
Let us define

Gk) =

A(k) = g(b + k) — g(b)

for k near 0. We first show that there is an € > 0 such that |A(k)|/|k]| is
bounded for 0 < |[k| < €. (This would follow from differentiability of g, but
that is what we are trying to prove!) By the preceding lemma, there is a
neighborhood C of a and an & > 0 such that

1f(x0) = f(x1)] 2 alxo — x|

for xo,x1 € C. Now f(C) is a neighborhood of b, by Step 2; choose € so that
btk is in f(C') whenever |k| < €. Then for [k| < €, we can set xo = g(b + k)
and x; = g(b) and rewrite the preceding inequality in the form

(b +k) — b| > g(b + k) — g(b)],
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which implies that

1/a > |AK)|/ K],

as desired.
Now we show that G(k) — 0 as k — 0. Let 0 < |k| < €. We have
_E-.
Gk) = é—(k)—llzlE——]E by definition,

g, [ B0 1800,
|a)l Ik|
(Here we use the fact that A(k) # 0 for k # 0, which follows from the fact
that g is one-to-one.) Now E~! is constant, and [A(k)|/|k| is bounded. It
remains to show that the expression in brackets goes to zero. We have
b+k=f(9(b+k)) = f(g(b) + A(K)) = f(a+ A(K)).
Thus the expression in brackets equals
f(a+ A®K) - f(2) — E- AK)
|AK)| '

Let k — 0. Then A(k) — O as well, because g is continuous. Since f is
differentiable at a with derivative E, this expression goes to zero, as desired.

Step 5. Finally, we show the inverse function g is of class C”.
Because g is differentiable, Theorem 7.4 applies to show that its derivative
is given by the formula

Dg(y) =[Df(g(x))1 ™,

for y € B. The function Dg thus equals the composite of three functions:

B L. A 2L GL(m) L GL(n),
where GL(n) is the set of non-singular n by n matrices, and [ is the function
that maps each non-singular matrix to its inverse. Now the function I is given
by a specific formula involving determinants. In fact, the entries of I(C’) are
rational functions of the entries of C; as such, they are C* functions of the
entries of C'.

We proceed by induction on r. Suppose f is of class C*. Then Df is
continuous. Because g and I are also continuous (indeed, g is differentiable
and I is of class C®), the composite function, which equals Dyg, is also
continuous. Hence ¢ is of class C.

Suppose the theorem holds for functions of class Cr—1. Let f be of
class C™. Then in particular f is of class C™"!, so that (by the induction
hypothesis), the inverse function g is of class C r=1_ Furthermore, the function
Df is of class C™1. We invoke Corollary 7.2 to conclude that the composite
function, which equals Dg, is of class C"~!. Then gis of class C". 0

Finally, we prove the inverse function theorem.
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Theorem 8.3 (The inverse function theorem). Let A be open
inR*; let f : A — R® be of class C*. If Df(x) is non-singular at
the point a of A, there is a neighborhood U of the point a such that f
carries U in a one-to-one fashion onto an open set V of R* and the
inverse function is of class C".

Proof. By Lemma 8.1, there is a neighborhood Up of a on which f is
one-to-one. Because det D f(x) is a continuous function of x, and det D f(a) #
0, there is a neighborhood U, of a such that det D f(x) # 0 on U;. If U equals
the intersection of Up and Uy, then the hypotheses of the preceding theorem
are satisfied for f : U — R™. The theorem follows. O

This theorem is the strongest one that can be proved in general. While
the non-singularity of Df on A implies that f is locally one-to-one at each
point of A, it does not imply that f is one-to-one on all of A. Consider the
following example:

EXAMPLE 1. Let f: R?> — R? be defined by the equation
f(r,6) =(rcos8,rsinb).

Then
cosf —rsin 0]
)

Df r,f) = [
() sinf rcosf
so that det Df(r,0) = r.

Let A be the open set (0,1) x (0,b) in the (r,6) plane. Then Df is non-
singular at each point of A. However, f is one-to-one on A only if b < 27.
See Figures 8.3 and 8.4.

\\\"m
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Figure 8.3
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0
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o
Figure 8.4

EXERCISES

1. Let f : R? — R? be defined by the equation
f(z,y)= (:82 - y2,21:y).

(a) Show that f is one-to-one on the set A consisting of all (z,y) with
z > 0. [Hint: If f(2,y) = f(a,b), then [|f(z,9)Il = || f(a, D))
(b) What is the set B = f(A)?
(c) If g is the inverse function, find Dg(0,1).
2. Let f : R> — R? be defined by the equation

f(z,y) = (€” cos y, €” siny).

(a) Show that f is one-to-one on the set A consisting of all (z,y) with
0 < y < 27. [Hint: See the hint in the preceding exercise.]
(b) What is the set B = f(A)?
(c) If g is the inverse function, find Dg(0,1).
3. Let f : R® — R™ be given by the equation f(x) = [Ix||* - x. Show that
f is of class C™ and that f carries the unit ball B(0;1) onto itself in
a one-to-one fashion. Show, however, that the inverse function is not

differentiable at 0.
4. Let g : R? — R? be given by the equation

g(z,y) = (2ye*, ze’).
Let f: R? — R® be given by the equation

flz,y) = Bz — ¢’ 2z +y, 2y + ¢°).
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(a) Show that there is a neighborhood of (0,1) that g carries in a one-
to-one fashion onto a neighborhood of (2, 0).
(b) Find D(fog™") at (2,0).
5. Let A be open in R™; let f: A — R™ be of class C"; assume Df(x) is
non-singular for x € A. Show that even if f is not one-to-one on A, the
set B = f(A) is open in R™.

71

*§9. THE IMPLICIT FUNCTION THEOREM

The topic of implicit differentiation is one that is probably familiar to you
from calculus. Here is a typical problem:

“Assume that the equation z3y + 2e*¥ = 0 determines y as
a differentiable function of z. Find dy/dz.”

One solves this calculus problem by “looking at ¥ as a function of z,” and
differentiating with respect to . One obtains the equation

32%y + 23dy/dz 4+ 2"V (y + x dy/dz) = 0,

which one solves for dy/dz. The derivative dy/dz is of course expressed in
terms of z and the unknown function .

The case of an arbitrary function f is handled similarly. Supposing that
the equation f(z,y) = 0 determines y as a differentiable function of z, say
y = g(z), the equation f(z,g(z)) = 0 is an identity. One applies the chain

rule to calculate
df [0z +(3f/9y)d' (z) =0,

so that
af/0x

gl(z) =_af/ay7

where the partial derivatives are evaluated at the point (z,g(z)). Note that
the solution involves a hypothesis not given in the statement of the problem.
In order to find g'(2), it is necessary to assume that @ f /3y is non-zero at the
point in question.

It in fact turns out that the non-vanishing of 8f/dy is also sufficient
to justify the assumptions we made in solving the problem. That is, if the
function f(z,y) has the property that d f/dy # 0 at a point (a,b) that is a
solution of the equation f(z,y) = 0, then this equation does determine y as
a function of z, for z near a, and this function of z is differentiable.
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This result is a special case of a theorem called the implicit function
theorem, which we prove in this section.

The general case of the implicit function theorem involves a system of
equations rather than a single equation. One seeks to solve this system for
some of the unknowns in terms of the others. Specifically, suppose that f :
R¥+" — R" is a function of class C''. Then the vector equation

f(@15. ., Tk4n) =0

is equivalent to a system of n scalar equations in k + 7 unknowns. One would
expect to be able to assign arbitrary values to k of the unknowns and to solve
for the remaining unknowns in terms of these. One would also expect that
the resulting functions would be differentiable, and that one could by implicit
differentiation find their derivatives.

There are two separate problems here. The first is the problem of finding
the derivatives of these implicitly defined functions, assuming they exist; the
solution to this problem generalizes the computation of g'(z) just given. The
second involves showing that (under suitable conditions) the implicitly defined
functions exist and are differentiable.

In order to state our results in a convenient form, we introduce a new
notation for the matrix D f and its submatrices:

Definition. Let A be openin R™; let f : A — R” be differentiable. Let
fi,..., fa be the component functions of f. We sometimes use the notation

_ a(fl""afn)
Df B a(.’El,...,Im)

for the derivative of f. On occasion we shorten this to the notation
Df =3df]0x.

More generally, we shall use the notation
O(fiys---» fir)
/G TR T

to denote the k by £ matrix that consists of the entries of Df lying in rows
i1,...,%% and columns ji,...,J¢. The general entry of this matrix, in row p
and column g, is the partial derivative df;, /0z;,.

Now we deal with the problem of finding the derivative of an implicitly
defined function, assuming it exists and is differentiable. For simplicity, we
shall assume that we have solved a system of n equations in k + 1 unknowns
for the last n unknowns in terms of the first k unknowns.
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Theorem 9.1. Let A be open in R¥+"; let f: A — R" be differen-
tiable. Write f in the form f(x,y), for x € R* and y € R"; then Df has
the form

Df=|0f/0x Of]0y]|.

Suppose there is a differentiable function g : B — R" defined on an open
set B in R*, such that
f(x,9(x)) =0

for allx € B. Then for x € B,

—((g—)fc-(x,g(x)) + %(x,g(x)) -Dg(x) = 0.

This equation implies that if the n by n matrix @f /Jy is non-singular at
the point (x, g(x)), then

Dg(x) = - [%(x,g(x))] - %(x,g(x»-

Note that in the case n = k = 1, this is the same formula for the derivative
that was derived earlier; the matrices involved are 1 by 1 matrices in that
case.

Proof. Given g, let us define h : B — R*¥*™ by the equation
h(x) = (xvg(x))‘
The hypotheses of the theorem imply that the composite function
H(x) = f(h(x)) = f(x,9(x))
is defined and equals zero for all x € B. The chain rule then implies that
0 = DH(x) = Df(h(x)) - Dh(x)
_[of of I
= [t Gew)] -]
_9of of
= &L (hx + 3L (1) - Do,
as desired. O

The preceding theorem tells us that in order to compute Dg, we must
assume that the matrix Jf /0y is non-singular. Now we prove that the non-
singularity of @f/0y suffices to guarantee that the function g exists and is
differentiable.
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Theorem 9.2 (Implicit function theorem). Let A be open in
R¥%: let f : A — R™ be of class CT. Write f in the form f(x,y),
for x € R* and y € R". Suppose that (a,b) is a point of A such that

f(a,b) =0 and of
det g(a,b) # 0.

Then there is a neighborhood B of a in R* and a unique continuous
function g : B — R" such that g(a) =b and

f(x,9(x)) =0
for all x € B. The function g is in fact of class C".

Proof. We construct a function F' to which we can apply the inverse
function theorem. Define F': A — R¥*" by the equation

F(x,y) = (x, f(x,y))-
Then F maps the open set A of R¥*" into R¥ x R” = R¥+" . Furthermore,
I 0 ]
of/0x Ofldy]’
Computing det DF by repeated application of Lemma 2.12, we have
det DF = det 0 f/8y. Thus DF is non-singular at the point (a,b).
Now F'(a,b) = (a,0). Applying the inverse function theorem to the map

F, we conclude that there exists an open set U x V' of R¥+" about (a,b)
(where U is open in R* and V is open in R") such that:

(1) F maps U x V in a one-to-one fashion onto an open set W in Rk+n
containing (a, 0).
(2) The inverse function G : W — U x V is of class C".
Note that because F(x,y) = (x, f(x,y)), we have

(x,5) = G(x, f(x,y))-

Thus G preserves the first k coordinates, as F' does. Then we can write G in
the form

DF:[

G(x,2) = (x, h(x,2))

for x € R* and z € R"; here h is a function of class C" mapping W into R".

Let B be a connected neighborhood of a in R¥, chosen small enough that
B x 0 is contained in W. See Figure 9.1. We prove existence of the function
g: B - R". If x € B, then (x,0) € W, so we have:

G(x,0) = (x, h(x, 0)) >
(x,O) = F(x’ h(x7 0)) = (x7 f(x7 h(x,O))),
0 = f(x,h(x,0)).
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Figure 9.1

We set g(x) = h(x, 0) for x € B; then g satisfies the equation f(x,9(x)) =0,
as desired. Furthermore,

(a,b) = G(a,0) = (a, h(a, 0));

then b = g(a), as desired.

Now we prove uniqueness of g. Let gp : B — R" be a continuous function
satisfying the conditions in the conclusion of our theorem. Then in particular,
go agrees with g at the point a. We show that if g agrees with g at the point
agp € B, then go agrees with g in a neighborhood By of ag. This is easy.
The map g carries ag into V. Since gy is continuous, there is a neighborhood
By of ag contained in B such that gy also maps Bg into V. The fact that
f(x,g0(x)) = 0 for x € By implies that

F(x,go(x)) = (x,0), so
(x, go(x)) = G(xa 0) = (xa h(x,O)).

Thus go and g agree on By. It follows that go and g agree on all of B: The set
of points of B for which |g(x) — go(x)| = 0 is open in B (as we just proved),
and so is the set of points of B for which |g(x) — go(x)| > 0 (by continuity
of g and go). Since B is connected, the latter set must be empty. O

In our proof of the implicit function theorem, there was of course nothing
special about solving for the last n coordinates; that choice was made simply
for convenience. The same argument applies to the problem of solving for any
7 coordinates in terms of the others.
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For example, suppose A is open in R® and f : A — R? is a function
of class C". Suppose one wishes to “solve” the equation flz,y,z,u,v) =0
for the two unknowns ¥ and u in terms of the other three. In this case, the
implicit function theorem tells us that if a is a point of A such that fla)=0
and af

det ———(a)#0
a(y’ u) ( ) # ?
then one can solve for y and u locally near that point, say y = ¢(z, 2,v) and
u = 9¥(z, z,v). Furthermore, the derivatives of ¢ and 1) satisfy the formula

a—?%?t% - [a(g,fu)]—l ‘ [a(zﬁ,v)] '

EXAMPLE 1. Let f : R> — R be given by the equation

flz,y)=2"+y" -5
Then the point (z,y) = (1, 2) satisfies the equation f(z,y) = 0. Both af oz
and §f/8y are non-zero at (1,2), so we can solve this equation locally for

either variable in terms of the other. In particular, we can solve for ¥ in terms
of z, obtaining the function

y = g(z) =[5 - 2")'".

Note that this solution is not unique in a neighborhood of z =1 unless we
specify that g is continuous. For instance, the function

_f -2 forz > 1,
h(z) = { -5-2z*? forz<1

satisfies the same conditions, but is not continuous. See Figure 9.2.

y=g(z) y = h(z)

/-N’Z) /\\(1,2)
\ ﬁl 4 \ i—;r,‘

Figure 9.2
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EXAMPLE 2. Let f be the function of Example 1. The point (z,y) = (v/5,0)
also satisfies the equation f(z,y) = 0. The derivative 8 f /8y vanishes at
(\/g, 0), so we do not expect to be able to solve for y in terms of £ near this
point. And, in fact, there is no neighborhood B of +/5 on which we can solve
for y in terms of z. See Figure 9.3.

(v5,0)

Figure 9.3
EXAMPLE 3. Let f : R — R be given by the equation

f(zy)y=2" -4

Then (0,0) is a solution of the equation f(z,y) = 0. Because 3f /0y vanishes
at (0,0), we do not expect to be able to solve this equation for y in terms of
z near (0,0). But in fact, we can; and furthermore, the solution is unique!
However, the function we obtain is not differentiable at £ = 0. See Figure 9.4.

Figure 9.4

EXAMPLE 4. Let f:R? — R be given by the equation

f(:cvy) = y2 _1"4'

Then (0,0) is a solution of the equation f(z,y) = 0. Because 8f /8y vanishes
at (0,0), we do not expect to be able to solve for y in terms of z near (0,0). In
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fact, however, we can do so, and we can do so in such a way that the resulting
function is differentiable. However, the solution is not unique.

(1,2)

Figure 9.5

Now the point (1,2) also satisfies the equation f(z,y) = 0. Because
df /08y is non-zero at (1,2), one can solve this equation for y as a continuous
function of z in a neighborhood of z = 1. See Figure 9.5. One can in fact
express Y as a continuous function of £ on a larger neighborhood than the one
pictured, but if the neighborhood is large enough that it contains 0, then the
solution is not unique on that larger neighborhood.

EXERCISES

1. Let f : R® — R? be of class C*; write f in the form f(z,y:1,¥2). Assume
that f(3,—1,2) =0 and

1 2 1
Df(3,—1,2)=[ ]

1 -1 1
(a) Show there is a function g : B — R? of class C' defined on an open
set B in R such that
f(w,gl(lf),g2(13)) =0
for r € B, and g(3) =(-1,2).
(b) Find Dg(3).

(c) Discuss the problem of solving the equation f(z,v1,y2) = 0 for an
arbitrary pair of the unknowns in terms of the third, near the point

(3,-1,2).
2. Given f : R®* — R?, of class C'. Let a = (1,2,-1,3,0); suppose that

f(a) =0 and
13 1 -1 2
Df(a) = [ ] .
001 2 -4
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(a) Show there is a function g : B — R? of class C* defined on an open
set B of R® such that

flz1,01(x), g2(x), Z2,23) = 0

for x = (1,2, 23) € B, and ¢(1,3,0) = (2,-1).

(b) Find Dg(1,3,0).

(c) Discuss the problem of solving the equation f(x) = 0 for an arbitrary
pair of the unknowns in terms of the others, near the point a.

. Let f:R? — R be of class C*, with f(2,—1) = —1. Set

G(z,y,u) = f(z,y) +*,
H(z,y,u) = uz + 3y° + u°.

The equations G(z,y,u) = 0 and H(z,y,u) = 0 have the solution

(z,y,u) = (2,-1,1).

(a) What conditions on Df ensure that there are C* functions z = g(y)
and u = h(y) defined on an open set in R that satisfy both equations,
such that g(—1) = 2 and h(-1) = 17

(b) Under the conditions of (a), and assuming that Df(2,-1) =[1 —3],
find g'(—1) and h'(-1).

. Let F : R> — R be of class C?, with F(0,0) = 0 and DF(0,0) = [2 3].

Let G : R® — R be defined by the equation
G(zyy)z)=F(x+2y+32-1,l‘3+y2—-z2).

(a) Note that G(-2,3,—1) = F(0,0) = 0. Show that one can solve
the equation G(z,y,z) = 0 for 2, say z = g(z,¥), for (z,y) in a
neighborhood B of (-2, 3), such that g(-2,3) = —1.

(b) Find Dg(-2,3).

*(c) f D1D1\F =3 and DD F = —1 and D, D2 F = 5 at (0,0), find
Dy Dy g(~-2,3).

. Let f,g : R®* — R be functions of class C*. “In general,” one expects

that each of the equations f(z,y,z) = 0 and g(z, y, 2) = 0 represents a
smooth surface in R®, and that their intersection is a smooth curve. Show
that if (2o, Yo, 20) satisfies both equations, and if d(f, g)/8(z,y, z) has
rank 2 at (Zo, Yo, 20), then near (2o, Yo, 20), one can solve these equations
for two of z,y, z in terms of the third, thus representing the solution set
locally as a parametrized curve.

. Let f : R*¥*™ — R™ be of class C"; suppose that f(a) = 0 and that Df(a)

has rank n. Show that if ¢ is a point of R™ sufficiently close to 0, then
the equation f(x) = c has a solution.

79






Integration

In this chapter, we define the integral of real-valued function of several real
variables, and derive its properties. The integral we study is called Riemann
integral; it is a direct generalization of the integral usually studied in a first
course in single-variable analysis.

§10. THE INTEGRAL OVER A RECTANGLE

We begin by defining the volume of a rectangle. Let
Q = [a17b1] X [a27b2] X e X [anabn]

be a rectangle in R”. Each of the intervals [a;, ;] is called a component
interval of (). The maximum of the numbers b; — ay,...,b, — a, is called
the width of ¢J. Their product

v(Q) = (by — ay) (by — ay) - -- (bn — a,)

is called the volume of Q).

In the case n = 1, the volume and the width of the (1-dimensional)
rectangle [a,b] are the same, namely, the number b — a. This number is also
called the length of [a,b].

Definition. Given a closed interval [a,b] of R, a partition of [a,b] is
a finite collection P of points of [a,b] that includes the points @ and b. We

21
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usually index the elements of P in increasing order, for notational convenience,

as
a=to<t1<"'<tk=b;

each of the intervals [t;_1,%;], for i = 1,...,k, is called a subinterval deter-
mined by P, of the interval [a,b]. More generally, given a rectangle

Q =la, 0] x - x [an, by]

in R®, a partition P of @ is an n-tuple (Py,..., Py) such that F; is a
partition of [a;j,b;] for each j. If for each j, I; is one of the subintervals
determined by P; of the interval [a;,b;], then the rectangle

R=Ix- xI,

is called a subrectangle determined by P, of the rectangle ). The maxi-
mum width of these subrectangles is called the mesh of P.

Definition. Let @ be a rectangle in R*; let f : @ — R; assume f is
bounded. Let P be a partition of . For each subrectangle R determined
by P, let

mg(f) = inf{f(x) | x € R},
MRg(f) = sup{f(x) | x € R}.
We define the lower sum and the upper sum, respectively, of f, determined

by P, by the equations

L(f,P)= Z mR(f) -v(R),
R

U(f,P)=) Mz(f) v(R),
R

where the summations extend over all subrectangles R determined by P.

Let P = (Pi,...,P,) be a partition of the rectangle . If P” is a
partition of Q obtained from P by adjoining additional points to some or all
of the partitions Py, ..., P,, then P” is called a refinement of P. Given two
partitions P and P’ = (P{,..., P;,) of @, the partition

P"=(P,UP!,...,P,UP)

is a refinement of both P and P’; it is called their common refinement.

Passing from P to a refinement of P of course affects lower sums and
upper sums; in fact, it tends to increase the lower sums and decrease the
upper sums. That is the substance of the following lemma:
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Lemma 10.1.  Let P be a partition of the rectangle Q; let f : Q —
R be a bounded function. If P" is a refinement of P, then

L(f,P) < L(f,P") and U(f,P")<U(f,P).

Proof. Let () be the rectangle
Q =[a1,b1] x -+ x [a,,b,).

It suffices to prove the lemma when P” is obtained by adjoining a single
additional point to the partition of one of the component intervals of Q.
Suppose, to be definite, that P is the partition (Py,..., P,) and that P” is
obtained by adjoining the point g to the partition P;. Further, suppose that
P, consists of the points

a1=to<t1<---<tk=b1

and that g lies interior to the subinterval [t;_1,1;].

We first compare the lower sums L(f, P) and L(f, P"). Most of the
subrectangles determined by P are also subrectangles determined by P”. An
exception occurs for a subrectangle determined by P of the form

Rs = [t,'_l,t,'] x S

(where S is one of the subrectangles of [a2,b] x - - - X [@y,by,] determined by
(P2,...,P,)). The term involving the subrectangle Rs disappears from the
lower sum and is replaced by the terms involving the two subrectangles

RIS = [ti—l’ q] xS and Rg = [qvti] X Sa

which are determined by P”. See Figure 10.1.

,Rs R

B \7

h

-+~
-+

X ]

Figure 10.1
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Now since mps(f) < f(x) for each x € R and for each x € R, it
follows that

mps(f) < mpy(f) and mrs(f) < mry(f)-

Because v( Rs) = v(R's) + v(R) by direct computation, we have
s S

mes(f)v(Rs) < mey (f)v(Rs) + mey(f)o(Rs)-

Since this inequality holds for each subrectangle of the form Rg, it follows
that
L(f,P) < L(f, P"),

as desired.
A similar argument applies to show that U(f,P) > U(f, P"). O

Now we explore the relation between upper sums and lower sums. We
have the following result:

Lemma 10.2. Let () be a rectangle; let f : @ — R be a bounded
function. If P and P’ are any two partitions of ), then

L(f,P) < U({, P).

Proof. In the case where P = P’, the result is obvious: For any sub-
rectangle R determined by P, we have mgr(f) < Mg(f). Multiplying by
v(R) and summing gives the desired inequality.

In general, given partitions P and P’ of ), let P" be their common
refinement. Using the preceding lemma, we conclude that

L(f,P) < L(f,P") < U(f,P") <U(f,P). O

Now (finally) we define the integral.

Definition. Let @) be a rectangle; let f : ¢) — R be a bounded function.
As P ranges over all partitions of (), define

fr=spg Py ema [ f =i ULP).
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These numbers are called the lower integral and upper integral, respec-
tively, of f over ). They exist because the numbers L(f, P) are bounded
above by U(f, P') where P’ is any fixed partition of (); and the numbers
U(f,P) are bounded below by L(f,P'). If the upper and lower integrals
of f over ) are equal, we say f is integrable over @}, and we define the inte-
gral of f over @ to equal the common value of the upper and lower integrals.
We denote the integral of f over @) by either of the symbols

/Qf or /er f(x).

EXAMPLE 1. Let f : [a,b] — R be a non-negative bounded function. If P
is a partition of I = [a,b], then L(f, P) equals the total area of a bunch of
rectangles inscribed in the region between the graph of f and the z-axis, and
U(f, P) equals the total area of a bunch of rectangles circumscribed about
this region. See Figure 10.2.

L(f,P) U(f,p)

N

Y

Wz

Figure 10.2

The lower integral represents the so-called “inner area” of this region,
computed by approximating the region by inscribed rectangles, while the up-
per integral represents the so-called “outer area,” computed by approximating
the region by circumscribed rectangles. If the “inner” and “outer” areas are
equal, then f is integrable.

Similarly, if Q) is a rectangle in R? and f : Q — R is non-negative and
bounded, one can picture L(f,P) as the total volume of a bunch of boxes
inscribed in the region between the graph of f and the zy-plane, and U(f, P)
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as the total volume of a bunch of boxes circumscribed about this region. See
Figure 10.3.

/

Figure 10.3

EXAMPLE 2. Let I =[0,1]. Let f: I — R be defined by setting f(z) =0 if
z is rational, and f(z) = 1if z is irrational. We show that f is not integrable

over I.
Let P be a partition of I. If R is any subinterval determined by P, then

mg(f) = 0 and Mg(f) = 1, since R contains both rational and irrational

numbers. Then
L(f,P)=)_ 0-u(R)=0,
R

and

U(f,P)=)_1-v(R)=1.

Since P is arbitrary, it follows that the lower integral of f over I equals 0,
and the upper integral equals 1. Thus f is not integrable over I.

A condition that is often useful for showing that a given function is inte-
grable is the following:

Theorem 10.3 (The Riemann condition). Let Q be a rectangle;
let f : Q — R be a bounded function. Then

LfSZﬂ

equality holds if and only if given € > 0, there exists a corresponding
partition P of Q for which

U(f’P)—L(f7P)<6'
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Proof. Let P’ be a fixed partition of ¢). It follows from the fact that
L(f,P) < U(f,P’) for every partition P of @), that

LfsWﬂF)

Now we use the fact that P’ is arbitrary to conclude that

Lrsfs

Suppose now that the upper and lower integrals are equal. Choose a
partition P so that L(f, P) is within €/2 of the integral fQ f, and a partition

P’ sothat U(f, P’} is within €/2 of the integral [, f. Let P" be their common
refinement. Since

MLHSMMWSLfSWﬂW%UmPL

the lower and upper sums for f determined by P are within € of each other.
Conversely, suppose the upper and lower integrals are not equal. Let

e:Zf—qu>0.

Let P be any partition of ). Then

Mﬁﬂséf<ZfsWﬁﬂ;

hence the upper and lower sums for f determined by P are at least € apart.
Thus the Riemann condition does not hold. O

Here is an easy application of this theorem.

Theorem 10.4.  Every constant function f(z) = c is integrable.
Indeed, if Q is a rectangle and if P is a partition of Q, then

[e=co@=cTum),
Q R

where the summation extends over all subrectangles determined by P.
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Proof. If R is a subrectangle determined by P, then mgr(f) = ¢ =
Mg(f). It follows that

L(f,P):CZ’U(R): U(faP)a
R

so the Riemann condition holds trivially. Thus fQ c exists; since it lies between
L(f,P) and U(f, P), it must equal ¢} v(R).

This result holds for any partition P. In particular, if P is the trivial
partition whose only subrectangle is @ itself,

Ac:c-v(Q). O

A corollary of this result, which we shall use in the next section, is the
following:

Corollary 10.5. Let Q be a rectangle in R*; let {Q1,...,Qx} be a
finite collection of rectangles that covers Q. Then

k
v(Q) < Y v(Qi)
i=1

Proof. Choose a rectangle Q' containing all the rectangles Q1. .. , Q-
Use the end points of the component intervals of the rectangles @, Q1, .- ., Qx
to define a partition P of Q’. Then each of the rectangles @, @1, ...,Qk is a
union of subrectangles determined by P. See Figure 10.4.

| T | | ' I L]

P I ] !
_____ .r--_.}__ | ————————

1 I : I »-———-I""Ql
I T -1 __Q___._
e e —— b /,Alc.____
_____ - — — —— —— b — — — —
_____ - A i R D —

' : I ! Q2
_____ '_'I"'T +— X -
_____ L L] __.}_+___|T_____.
]

o ‘W\LLQB bl

| [ | 1| |

1 [ B | 1 1 1 Q

Figure 10.4
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From the preceding theorem, we conclude that

v(@) =Y v(R),

RCQ

where the summation extends over all subrectangles contained in (). Be-
cause each such subrectangle R is contained in at least one of the rectangles

Q1,...,Q4%, we have

k
Z v(R) < Z Z v(R).

RCQ i=1 RCQ:

Again using Theorem 10.4, we have

Y u(R)=v(Qu);

RCQI

the corollary follows. 0O

A remark about notation. We shall often use a slightly different notation
for the integral in the case n = 1. In this case, Q) is a closed interval [a,b] in
R, and we often denote the integral of f over [a, b] by one of the symbols

[ [ r@

=a

instead of the symbol f[a ) f.
Yet another notation is used in calculus for the one-dimensional integral.
There it is common to denote this integral by the expression

/a ' f(a) de,

where the symbol “dz” has no independent meaning. We shall avoid this
notation for the time being. In a later chapter, we shall give “dz” a meaning
and shall introduce this notation.

The definition of the integral we have given is in fact due to Darboux. An
equivalent formulation, due to Riemann, is given in Exercise 7. In practice, it
has become standard to call this integral the Riemann integral, independent
of which definition is used.
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EXERCISES

1.

*6.

Let f,g: Q@ — R be bounded functions such that f(x) < g(x) for x € Q.
Show that iQfSng and fo < ng.

. Suppose f : @ — R is continuous. Show f is integrable over Q. [Hini:

Use uniform continuity of f.]

. Let [0,1]* = [0,1] x [0,1]. Let f : [0,1}* — R be defined by setting

f(z,y)=0if y # z, and f(z,y) =1if y = z. Show that f is integrable
over [0,1)°.

. We say f:[0,1] — R is increasing if f(z1) < f(z2) whenever 21 < z2.

I f,g:[0,1] — R are increasing and non-negative, show that the function
h(z,y) = f(x)g(y) is integrable over [0, 1]%.

Let f: R — R be defined by setting f(z) = 1/q if x = p/q, where p and
q are positive integers with no common factor, and f(z) = 0 otherwise.
Show f is integrable over [0, 1].

Prove the following:

Theorem. Letf:Q — R be bounded. Then fis integrable over Q if
and only if given € > 0, there is a § > 0 such thatU(f, P)—L(f, P) <
€ for every partition P of mesh less than é.

Proof. (a) Verify the “if” part of the theorem.

(b) Suppose |f(x)] < M for x € Q. Let P be a partition of Q. Show
that if P" is obtained by adjoining a single point to the partition of
one of the component intervals of (Q, then

0< L(f,P")~ L(f, P) < 2M(mesh P) (width Q" .

Derive a similar result for upper sums.

(c) Prove the “only if” part of the theorem: Suppose f is integrable
over Q. Given € > 0, choose a partition P’ such that U(f, P') -
L(f, P') < €/2. Let N be the number of partition points in P’; then
let

6 =¢/8MN (width Q)" .

Show that if P has mesh less than 6, then U(f,P) — L(f,P) < €.
[Hint: The common refinement of P and P’ is obtained by adjoining
at most N points to P.]

. Use Exercise 6 to prove the following:

Theorem. Let f: Q — R be bounded. Then the statement that f
is integrable over @, with fo = A, is equivalent to the statement
that given € > 0, there is a 6 > 0 such that if P is any partition of
mesh less than 6, and if, for each subrectangle R determined by P,
Xg ts a point of R, then

1) flxr)u(R) - Al < e.
R
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§11. EXISTENCE OF THE INTEGRAL

In this section, we derive a necessary and sufficient condition for the existence
of the integral fQ f. It involves the notion of a “set of measure zero.”

Definition. Let A be a subset of R®. We say A has measure zero in
R" if for every € > 0, there is a covering 1, @32, ... of A by countably many

rectangles such that
o0

Zv(Q.-) < €.

i=1

If this inequality holds, we often say that the total volume of the rectangles
Q1, Q2,...is less than e.

We derive some properties of sets of measure zero.

Theorem 11.1. (a) If B C A and A has measure zero in R", then
so does B.

(b) Let A be the union of the countable collection of sets A, A,,....
If each A; has measure zero in R®, so does A.

(c) A set A has measure zero in R® if and only if for every ¢ > 0,
there is a countable covering of A by open rectangles Int (), Int Q)o,. ..
such that

o0

Z ’U(Qi) < €

i=1
(d) If Q is a rectangle in R®, then Bd Q has measure zero in R®
but @ does not.

Proof. (a) is immediate. To prove (b), cover the set A; by countably

many rectangles
Qujs Q25> Q3js -

of total volume less than €/2/. Do this for each j. Then the collection of
rectangles {Q;;} is countable, it covers A, and it has total volume less than

oo

Yoe/¥ =

j=1

(c) If the open rectangles Int @1, Int (Js,... cover A, then so do the
rectangles @1, @2,.... Thus the given condition implies that A has mea-
sure zero. Conversely, suppose A has measure zero. Cover A by rectangles
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', @4, ... of total volume less than €/2. For each i, choose a rectangle Qi

such that
QicC Int Q; and v(Qs) < 20(Q)).

(This we can do because v(Q)) is a continuous function of the end points of
the component intervals of Q).) Then the open rectangles Int @1, Int Q2,. ..
cover A, and Y v(Q;) < €.

(d) Let
Q = [al,bl] X oo X [a,,,b,,].

The subset of @ consisting of those points x of @ for which z; = a; is called
one of the ith faces of . The other #*! face consists of those x for which
z; = b;. Each face of @ has measure zero in R™; for instance, the face for
which x; = a; can be covered by the single rectangle

[ahbl] X .- X [ai,ai+6] X oo X [aﬂ»bn]’

whose volume may be made as small as desired by taking § small. Now Bd @
is the union of the faces of Q, which are finite in number. Therefore Bd @
has measure zero in R™.

Now we suppose @ has measure zero in R”, and derive a contradiction.
Set € = 9(Q). We can by (c) cover Q by open rectangles Int @1, Int Q2,...
with Y v(Q;) < €. Because @ is compact, we can cover () by finitely many
of these open sets, say Int Q1,..., Int Q. But

k

Z v(Qi) <€,

i=1

a result that contradicts Corollary 10.5. O

EXAMPLE 1. Allowing for a countably infinite collection of rectangles is an
essential part of the definition of a set of measure zero. One would obtain
a different notion if one allowed only finite collections. For instance, the set
A of rational numbers in I = [0,1] is a countable union of one-point sets, so
that A has measure zero in R by (b) of the preceding theorem. But A cannot
be covered by finitely many intervals of total length less than € if ¢ < 1. For
suppose Iy, ... I is a finite collection of intervals covering A. Then the
set B which is their union is a finite union of closed sets and therefore closed.
Since B contains all rationals in I, it contains all limit points of these rationals;
that is, it contains all of I. But this implies that the intervals Iy, ... I cover
I, whence by Corollary 10.5,

k

> vy 2 v(I) =1.

=1

Now we prove our main theorem.
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Theorem 11.2. Let ) be a rectangle in R®; let f : () — R be a
bounded function. Let D be the set of points of Q at which f fails to be
continuous. Then fQ f ezists if and only if D has measure zero in R™.

Proof. Choose M so that |f(x)] < M for x € Q.

Step 1. We prove the “if” part of the theorem. Assume D has measure
zero in R®. We show that f is integrable over @) by showing that given € > 0,
there is a partition P of @ for which U(f, P)— L(f,P) < e.

Given ¢, let € be the strange number
€ =€/ (2M +2v(Q)).

First, we cover D by countably many open rectangles Int @, Int Qa,... of
total volume less than €, using (c) of the preceding theorem. Second, for each
point a of @ not in D, we choose an open rectangle Int ()a containing a such
that

If(x) - f(a)] < € for x€QaNQ.

(This we can do because f is continuous at a.) Then the open sets Int Q;
and Int Qa, fori = 1,2, ... and for a € () — D, cover all of Q. Since Q is
compact, we can choose a finite subcollection

Int Q1,..., Int Qg, Int Qa,,..., Int Qa,

that covers Q. (The open rectangles Int @,,..., Int ) may not cover D,
but that does not matter.)
Denote QQa; by @} for convenience. Then the rectangles

Ql"——a Qh Qll,“" Qi

cover (), where the rectangles J; satisfy the condition

o0

(1) Y v(@i) < ¢,

i=1
and the rectangles Q; satisfy the condition

(2) If(x) - f(M)| <2 for x,y €Q;NQ.

Without change of notation, let us replace each rectangle @; by its inter-
section with @), and each rectangle ()% by its intersection with (). The new
rectangles {Q);} and {Q}} still cover é and satisfy conditions (1) and (2).

Now let us use the end points of the component intervals of the rectangles
Q1y..., Qr, Q,..., Q) to define a partition P of . Then each of the
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rectangles (; and @} is a union of subrectangles determined by P. We
compute the upper and lower sums of f relative to P.

T I 11T 1T 1T 11T 1p
NI N I N <
L ar a1 4
_4__1_:1 I [ t_—RER
—F ' T I
:::@%1t1 - +—=i——
L AT C O 0T T<Rew
TR T O N O A Y

D T errT

L bt b ittt

Figure 11.1

Divide the collection of all subrectangles R determined by P into two
disjoint subcollections R and R’, so that each rectangle R € R lies in one of
the rectangles Q;, and each rectangle R € R’ lies in one of the rectangles Q;.
See Figure 11.1. We have

> (Mr(f) - mr(f))v(R) <2M ) v(R), and

RER ReR
3 (Mr(f) - ma(f))o(R) < 2¢ Y v(R);
RER' ReR!

these inequalities follow from the fact that

|f(x) - f(y)l < 2M

for any two points x,y belonging to a rectangle R € R, and

|f(x) = f(y)] < 2€

for any two points x,y belonging to a rectangle R € R’. Now

k k
TRy ¥ b= v@)<e, and

RER i=1 RCQ,
ST w(R) < Y v(R)=0(Q).
ReR! RCQ

Thus
U(f,P)-L(f,P) < 2Me +2¢v(Q) = e.
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Step 2. We now define what we mean by the “oscillation” of a function f
at a point a of its domain, and relate it to continuity of f at a.

Given a € () and given 0 > 0, let As denote the set of values of f(x) at
points x within é of a. That is,

As={f(x) | x€ @ and |x-a|<d)}.

Let Ms(f) = sup A;, and let ms(f) = inf As. We define the oscillation of
f at a by the equation

v(fia) = juf [Ms(f) = ms(f)]-

Then v(f;a) is non-negative; we show that f is continuous at a if and only
if v(f;a) =0.

If f is continuous at a, then, given ¢ > 0, we can choose § > 0 so that
|f(x) = f(a)| < € for all x € @ with |x —a|] < 4. It follows that

Ms(f) < f(a)+¢ and ms(f) > f(a) -e

Hence v(f;a) < 2¢. Since € is arbitrary, v(f;a) = 0.
Conversely, suppose v(f;a) = 0. Given € > 0, there is a § > 0 such that

Al&(f)-—mg(f) < €.
Nowif x € Q and |x — a| < §,
ms(f) < f(x) < Ms(f).

Since f(a) also lies between m;s( f) and Mj(f), it follows that | f(x) — f(a)| <
€. Thus f is continuous at a.

Step 3. We prove the “only if” part of the theorem. Assume f is inte-
grable over (). We show that the set D of discontinuities of f has measure
zero in R™.

For each positive integer m, let

Dr ={a|v(f;a) 2 1/m}.

Then by Step 2, D equals the union of the sets D,,. We show that each set
D,,, has measure zero; this will suffice.

Let m be fixed. Given € > 0, we shall cover D,, by countably many
rectangles of total volume less than e.

First choose a partition P of @ for which U(f, P) — L(f,P) < ¢/2m.
Then let D;, consist of those points of D,, that belong to Bd R for some
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subrectangle R determined by P; and let Dy, consist of the remainder of Dp,.
We cover each of D', and D", by rectangles having total volume less than €/2.

For D!, this is easy. Given R, the set Bd R has measure zero in R"; then
so does the union {J; Bd R. Since Dj, is contained in this union, it may be
covered by countably many rectangles of total volume less than € /2.

Now we consider D”.. Let Ry,..., Ry be those subrectangles determined
by P that contain points of D/,. We show that these subrectangles have
total volume less than €/2. Given i, the rectangle R; contains a point a of
D".. Since a ¢ Bd R;, there is a § > 0 such that R; contains the cubical
neighborhood of radius 6§ centered at a. Then

1/m < v(f;a) < Ms(f) — ms(f) < Mg,(f) - mr.(f)-
Multiplying by v(R;) and summing, we have

k

> (1/m)v(R:) < U(f, P)~ L(f, P) < ¢/2m.

i=1
Then the rectangles Ry,..., R) have total volume less than ¢/2. O
We give an application of this theorem:

Theorem 11.3. Let Q be a rectangle in R*; let f : ) — R; assume
f is integrable over Q.

(2) If f vanishes ezcept on a set of measure zero, then fQ f=0.

(b) If f is non-negative and if fQ f =0, then f vanishes except on a
set of measure zero.

Proof. (a) Suppose f vanishes except on a set E of measure zero. Let
P be a partition of Q. If R is a subrectangle determined by P, then R is
not contained in E, so that f vanishes at some point of R. Then mpg(f) <0
and Mgp(f) > 0. It follows that L(f, P) <0 and U(f,P) > 0. Since these
inequalities hold for all P,

Léng and 7Qf_>_0.

Since fQ f exists, it must equal zero.

(b) Suppose f(x) > 0 and [, f = 0. We show that if f is continuous
at a, then f(a) = 0. It follows that f must vanish except possibly at points
where f fails to be continuous; the set of such points has measure zero by the
preceding theorem.
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We suppose that f is continuous at a and that f(a) > 0 and derive a
contradiction. Set € = f(a). Since f is continuous at a, there is a § > 0 such
that

f(x)>€/2 for |x—a|]<d and x€Q.

Choose a partition P of () of mesh less than 8. If Ry is a subrectangle
determined by P that contains a, then mpg,(f) > €/2. On the other hand,
mp(f) > 0 for all R. It follows that

L(f,P)= ) _ ma(f) v(R) > (¢/2)v(Ro) > 0.
R

But
I/ ,P < = 0. D

EXAMPLE 2. The assumption that fQ S exists is necessary for the truth of

this theorem. For example, let I = [0,1] and let f(x) =1 for z rational and
f(z) = 0 for z irrational. Then f vanishes except on a set of measure zero.
But it is not true that fl f =0, for the integral of f over I does not even
exist.

EXERCISES

1. Show that if A has measure zero in R”, the sets A and Bd A need not
have measure zero.

. Show that no open set in R™ has measure zero in R”.
. Show that the set R*~! x 0 has measure zero in R™.

Show that the set of irrationals in [0, 1] does not have measure zero in R.

U\PWN

. Show that if A is a compact subset of R™ and A has measure zero in R”,
then given € > 0, there is a finite collection of rectangles of total volume
less than € covering A.

6. Let f :[a,b] — R. The graph of f is the subset

Gr={(z,y) |y = f(2)}

of R%. Show that if f is continuous, G4 has measure zero in R?. [Hint:
Use uniform continuity of f.}

7. Consider the function f defined in Example 2. At what points of {0, 1]
does f fail to be continuous? Answer the same question for the function
defined in Exercise 5 of §10.
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8. Let Q be a rectangle in R™; let f : Q — R be a bounded function. Show
that if f vanishes except on a closed set B of measure zero, then fQ S

exists and equals zero.
9. Let Q be a rectangle in R™; let f : Q — R; assume f is integrable over Q.
(a) Show that if f(x) > 0 for x € Q, then fQ f=o.

(b) Show that if f(x) > 0 for x € Q, then [, f > 0.

10. Show that if Q;, Q2,... is a countable collection of rectangles covering

Q, then v(Q) < - v(Q)-

§12. EVALUATION OF THE INTEGRAL

Given that a function f : § — R is integrable, how does one evaluate its
integral?

Even in the case of a function f : [a,b) — R of a single variable, the
problem is not easy. One tool is provided by the fundamental theorem of
calculus, which is applicable when f is continuous. This theorem is familiar
to you from single-variable analysis. For reference, we state it here:

Theorem 12.1 (Fundamental theorem of calculus). (a) If f is
continuous on [a,b], and if

F@)= [ f

for z € [a,b], then F'(z) exists and equals f(z).
(b) If f is continuous on [a,b], and if g is a function such that
g (z) = f(z) for z € [a,b], then

b
[ f=9®)-g@. O
(When one refers to the derivatives F' and ¢’ at the end points of the

interval [a,b], one means of course the appropriate “one-sided” derivatives.)
The conclusions of this theorem are summarized in the two equations

D[ f=1@ ama [ Do =g - gta)
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In each case, the integrand is required to be continuous on the interval in
question.

Part (b) of this theorem tells us we can calculate the integral of a contin-
uous function f if we can find an antiderivative of f, that is, a function g
such that ¢’ = f. Part (a) of the theorem tells us that such an antiderivative
always exists (in theory), since F’ is such an antiderivative. The problem, of
course, is to find such an antiderivative in practice. That is what the so-called
“Technique of Integration,” as studied in calculus, is about.

The same difficulties of evaluating the integral occur with n-dimensional
integrals. One way of approaching the problem is to attempt to reduce the
computation of an n-dimensional integral to the presumably simpler prob-
lem of computing a sequence of lower-dimensional integrals. One might even
be able to reduce the problem to computing a sequence of one-dimensional
integrals, to which, if the integrand is continuous, one could apply the funda-
mental theorem of calculus.

This is the approach used in calculus to compute a double integral. To
integrate the continuous function f(z,y) over the rectangle @ = [a,b] x [c,d],
for example, one integrates f first with respect to y, holding z fixed, and
then integrates the resulting function with respect to . (Or the other way
around.) In doing so, one is using the formula

[r = [0 [T

or its reverse. (In calculus, one usually inserts the meaningless symbols “dz”
and “dy,” but we are avoiding this notation here.) These formulas are not
usually proved in calculus. In fact, it is seldom mentioned that a proof is
needed; they are taken as “obvious.” We shall prove them, and their appro-
priate n-dimensional versions, in this section.

These formulas hold when f is continuous. But when f is integrable but
not continuous, difficulties can arise concerning the existence of the various
integrals involved. For instance, the integral

| " few)

=c

may not exist for all z even though [, f exists, for the function f can behave
badly along a single vertical line without that behavior affecting the existence
of the double integral.

One could avoid the problem by simply assuming that all the integrals
involved exist. What we shall do instead is to replace the inner integral in
the statement of the formula by the corresponding lower integral (or upper
integral), which we know exists. When we do this, a correct general theorem
results; it includes as a special case the case where all the integrals exist.
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Theorem 12.2 (Fubini’s theorem). Let Q = Ax B, where A is a
rectangle in R* and B is a rectangle in R*. Let f: Q — R be a bounded
function; write f in the form f(x,y) for x € A and 'y € B. For each
x € A, consider the lower and upper integrals

[, fooy) and f(x,¥).
JY€EB yeB

If f is integrable over @, then these two functions of x are integrable
over A, and

Lr= [, featon = [ R

Proof. For purposes of this proof, define
(9= [ Sy ad Tog= [ fox)
JYEB y€B

for x € A. Assuming fQ f exists, we show that I and T are integrable over
A, and that their integrals equal f,, f.

Let P be a partition of @. Then P consists of a partition P4 of A, and a
partition Pp of B. We write P = (P4, Pp). If R, is the general subrectangle
of A determined by Py, and if Rp is the general subrectangle of B determined
by Pg, then R4 x Rp is the general subrectangle of ) determined by P.

We begin by comparing the lower and upper sums for f with the lower
and upper sums for I and I.

Step 1. We first show that
L(f,P) < L(L, Pa);

that is, the lower sum for f is no larger than the lower sum for the lower
integral, I.
Consider the general subrectangle R4 x Rp determined by P. Let xo be
a point of R4. Now
MR, xR (f) < f(x0,)

for all y € Rp; hence

mRAxRB(f) < Mpg (f(x07Y))‘

See Figure 12.1. Holding xp and R, fixed, multiply by v(£p) and sum over
all subrectangles Rp. One obtains the inequalities

" mraxna(£)3(Rs) < LF(x0,3), Pa) < [ Fox,y) = Lixo).
Ro JyeB
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77
%

RE{‘Y

Figure 12.1

This result holds for each x; € R4. We conclude that

Z Mp, XRB(f)v(RB) <mg, (l)

Rp

Now multiply through by v(R4) and sum. Since v(R4)v(Rg) = v(Rax Rp),
one obtains the desired inequality

Step 2. An entirely similar proof shows that
U(f,P) > U(, Pa);

that is, the upper sum for f is no smaller than the upper sum for the upper
integral, I. The proof is left as an exercise.

Step 3. We summarize the relations that hold among the upper and
lower sums of f,I, and I in the following diagram:

S U(lypA) S
L(f,P) < L(L, Pa) U, Pa) <U(f,P).
S L(TaPA) <

The first and last inequalities in this diagram come from Steps 1 and 2. Of the
remaining inequalities, the two on the upper left and lower right follow from
the fact that L(h, P) < U(h, P) for any h and P. The ones on the lower left
and upper right follow from the fact that I(x) < I(x) for all x. This diagram
contains all the information we shall need.
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Step 4. We prove the theorem. Because f is integrable over (), we can,
given € > 0, choose a partition P = (P4, Pg) of @ so that the numbers at the
extreme ends of the diagram in Step 3 are within € of each other. Then the
upper and lower sums for I are within € of each other, and so are the upper
and lower sums for 1. It follows that both [ and T are integrable over A.

Now we note that by definition the integral [ 4+ L lies between the upper

and lower sums of [. Similarly, the integral [ A T lies between the upper and
lower sums for I. Hence all three numbers

[41 and AT and Lf

lie between the numbers at the extreme ends of the diagram. Because ¢ is

arbitrary, we must have
/ I= / 1= / f. O
A A Q

This theorem expresses [, f as an iterated integral. To compute fQ f

one first computes the lower integral (or upper integral) of f with respect to
y, and then one integrates the resulting function with respect to x. There is
nothing special about the order of integration; a similar proof shows that one
can compute f f by first taking the lower integral (or upper integral) of f
with respect to x, and then integrating this function with respect to y.

Corollary 12.3. Let Q = A x B, where A is a rectangle in R* and
B is a rectangle in R*. Let f : Q — R be a bounded function. If fQ f

ezists, and if nyB f(x,y) exists for each x € A, then

/Qf - /xe,. [ oy O

Corollary 12.4. Let Q = I, x ---x I, where I; is a closed interval
in R for each j. If f : Q — R is continuous, then

/Qf = /M“---/Inelnf(xl,...,x,,). O
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Evaluation of the Integral

EXERCISES

1. Carry out Step 2 of the proof of Theorem 12.2.
2. Let I =[0,1]; let Q@ = I x I. Define f : Q — R by letting f(z,y) =1/q

if y is rational and £ = p/q, where p and ¢ are positive integers with no
common factor; let f(z,y) = 0 otherwise.

(a) Show that fQ f exists.
(b) Compute

f(z,y) and / f(z,9).
yerI

L yel

(¢) Verify Fubini’s theorem.

. Let Q@ = A x B, where A is a rectangle in R* and B is a rectangle in R™.
) g g

Let f : @ — R be a bounded function.
(a) Let g be a function such that

/ ﬂ&wsmﬂS/ fx,y)
Jy€EB yEB

for all x € A. Show that if f is integrable over @, then g is integrable
over A, and fo f=[,g. [Hint: Use Exercise 1 of §10.]

(b) Give an example where fQ f exists and one of the iterated integrals

[ﬂl@ﬂ&waM.LB[“ﬂmw

exists, but the other does not.

*(c) Find an example where both the iterated integrals of (b) exist, but
the integral fQ S does not. [Hint: One approach is to find a subset
S of Q whose closure equals @, such that S contains at most one
point on each vertical line and at most one point on each horizontal
line.]

4. Let A be open in R%; let f: A — R be of class C?. Let Q be a rectangle

contained in A.

(a) Use Fubini’s theorem and the fundamental theorem of calculus to

show that
/ D2D1f=/ DD, f.
Q Q

(b) Give a proof, independent of the one given in §6, that D> D, f(x) =
D1 D, f(x) for each x € A.
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§13. THE INTEGRAL OVER A BOUNDED SET

In the applications of integration theory, one usually wishes to integrate func-
tions over sets that are not rectangles. The problem of finding the mass of a
circular plate of variable density, for instance, involves integrating a function
over a circular region. So does the problem of finding the center of gravity of
a spherical cap. Therefore we seek to generalize our definition of the integral.
That is not in fact difficult.

Definition. Let .S be a bounded set in R”; let f : § — R be a bounded
function. Define fs : R® — R by the equation

fs(x) = {(f;(x) for x € S,

otherwise.

Choose a rectangle Q containing S. We define the integral of f over S by

the equation
/f= / fS,
s Q

provided the latter integral exists.

We must show this definition is independent of the choice of . That is
the substance of the following lemma:

Lemma 13.1. Let Q and Q' be two rectanglesinR*. If f :R* — R
is a bounded function that vanishes outside Q N Q’, then

/Qf= [ 1

one integral ezists if and only if the other does.

Proof. We consider first the case where @ C §’. Let E be the set
of points of Int Q) at which f fails to be continuous. Then both the maps
f:Q — Rand f: Q — R are continuous except at points of E and
possibly at points of Bd Q. Existence of each integral is thus equivalent to
the requirement that E have measure zero.

Now suppose both integrals exist. Let P be a partition of ', and let P”
be the refinement of P obtained from P by adjoining the end points of the
component intervals of Q). Then @ is a union of subrectangles R determined
by P”. See Figure 13.1. If R is a subrectangle determined by P" that is not
contained in Q, then f vanishes at some point of R, whence mg(f) < 0. It
foliows that

L)< Y malHB) < [ f

RcCQ
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We conclude that L(f, P) < fQ f

4
I s 1“?‘1‘_ -
S A P I st
BT N T A I A e
SN I T Y
0 A Y Y I A

Figure 13.1

An entirely similar argument shows that U( f, P) > fQ f. Since P is an

arbitrary partition of @', it follows that [, f = Jo f
The proof for an arbitrary pair of rectangles @), Q’ involves choosing
a rectangle Q" containing them both, and noting that fo = fq,,f =

Jof- O

In the remainder of this section, we study the basic properties of this
integral, and we obtain conditions for its existence. In the next section, we
derive (as far as we are able) a method for its evaluation.

Lemma 13.2.  Let S be a subset of R*; let f,g: S — R". Let
F,G: S5 — R" be defined by the equations

F(x) = max{f(x),g(x)} and G(x) = min{f(x),g(x)}.

(a) If f and ¢ are continuous at xq, so are F and G.
(b) If f and g are integrable over S, so are F and G.

Proof. (a) Suppose f and g are continuous at xo. Consider first the
case in which f(xo) = g(x0) = r. Then F(x¢) = G(x¢) = r. By continuity,
given € > 0, we can choose 6 > 0 so that

[f(x)—r| <€ and [g(x)—T|<e€
for |x —xg| < 6 and x € 5; for such values of x, it follows automatically that
| F(x) — F(x0)] < € and |G(x)— G(xo)| < €.

On the other hand, suppose f(xg) > g(xo). By continuity, we can find a
neighborhood U of xg such that f(x) — g(x) > 0 for x € U and x € S.
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Then F(x) = f(x) and G(x) = g(x) on U N §; it follows that F" and G are
continuous at xo. A similar argument holds if f(xo) < g(xo)-

(b) Suppose f and g are integrable over S. Let () be a rectangle con-
taining S. Then fs and gs are continuous on () except on subsets D and E,
respectively, of @, each of measure zero. Now

Fs(x) = max{fs(x),gs(x)} and Gs(x)=min{fs(x),gs(x)},

as you can easily check. It follows that Fs and Gs are continuous on
except on the set D U F, which has measure zero. Furthermore, Fs and
Gs are bounded because fs and gs are. Then Fs and G5 are integrable
over . O

Theorem 13.3 (Properties of the integral). Let S be a bounded
set in R”; let f,g: S5 — R be bounded functions.

(a) (Linearity). If f and g are integrable over S, so is af + bg, and

Jas+be) = off + bfa

(b) (Comparison). Suppose f and g are integrable over S. If f(x) <
g(x) for x € S, then
/fs/m
s s

Furthermore, |f| is integrable over S and

[ n1< [

(¢) (Monotonicity). Let T C S. If f is non-negative on S and
integrable over T and S, then

IREYR:

(d) (Additivity). If S = S1 U S, and f is integrable over §) and S,
then f is integrable over S and Sy N Sy; furthermore

[r-f e L1

Proof. (a) It suffices to prove this result for the integral over a rectangle,
since

(af +bg)s = afs + bys.
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So suppose f and g are integrable over (). Then f and g are continuous except
onsets D, E, respectively, of measure zero. It follows that the function a f+bg
is continuous except on the set D U FE, so it is integrable over Q.
We consider first the case where a,b > 0. Let P” be an arbitrary partition
of Q. If R is a subrectangle determined by P", then
a mp(f)+bmp(g) < a f(x)+b g(x)
for all x € R. It follows that
a mp(f) + b mp(g) < mr(af + bg),
so that

a L(f, P"y +b L(g, P") < L(af + bg, P") < / (af +bg).
Q
A similar argument shows that
at«ﬂPﬂ+bU@J”n;/mf+@»
Q

Now let P and P’ be any two partitions of (), and let P’ be their common
refinement. It follows from what have just proved that

a L(f,P)+b L(g, P') < /Q (af +bg) < a U(f,P) +b U(g, P').

Now by definition the number a fQ f+ beg also lies between the numbers
at the ends of this sequence of inequalities. Since P and P’ are arbitrary, we

conclude that
f@r+bg = of7 + b[q
Q Q Q

Now we complete the proof by showing that

Lhﬂ:—éﬁ

Let P be a partition of Q; let R be a subrectangle determined by P. For

x € R, we have
~Mg(f) £ -f(x) < =mr(f),

so that
—Mg(f) < mp(—f) and Mg(-f) < —mg(f).
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Multiplying by v(R) and summing, we obtain the inequalities
VP S U-FP < () USHP S =L, P

By definition, the number — fQ f also lies between the numbers at the extreme
ends of this sequence of inequalities. Since P is arbitrary, our result follows.

(b) It suffices to prove the comparison property for the integral over a
rectangle. So suppose f(x) < g(x) for x € Q. If R is any rectangle contained

in @, then
mr(f) < f(x) < g(x)

for each x € R. Then mp(f) < mg(g). It follows that if P is any partition
of @,

L(f,P) < L(g, P) < /Q g

Since P is arbitrary, we conclude that

/Qfs/Qg-

The fact that | f | is integrable over S follows from the equation
1 f(x)] = max{f(x), - f(x)}.

The desired inequality follows by applying the comparison property to the

inequalities
= f(x)| < f(x) < 1f(x)I.

(¢) If f is non-negative and if T' C S, then fr(x) < fs(x) for all x. One
then applies the comparison property.

(d) Let T = S1 0 S3. We prove f is integrable over § and T'. Consider
first the special case where f is non-negative on 5. Let () be a rectangle
containing S. Then both fs, and fs, are integrable over () by hypothesis. It
follows from the equations

fs(x) = max{fs,(x), fs,(x)} and fr(x) = min{fs, (x), fs,(x)}

that fs and fr are integrable over Q.
In the general case, set

f(x) = max{f(x),0} and f_(x)=max{-f(x),0}.

Since f is integrable over S; and S5, so are fi and f_. By the special case
already considered, f, and f_ are integrable over S and T'. Because

fx) = f4(x) - f-(x),
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it follows from linearity that f is integrable over S and T'.
The desired additivity formula follows by applying linearity to the equa-
tion

fs(x) = fs,(x) + fs,(x) — fr(x). O

Corollary 13.4. Let 51, ..., Si be bounded sets in R"; assume
SiN S; has measure zero whenever i # j. Let S = S U --- USe. If
f 5 — R is integrable over each set S;, then f is integrable over S and

Jor= [ )

Proof. The case k = 2 follows from additivity, since the integral of f
over 51N S, vanishes by Theorem 11.3. The general case follows by induction.

O

Up to this point, we have made no @ priori restrictions on the functions f
we deal with in integration theory, other than that they be bounded. In
particular, we have not required f to be continuous. The reason is obvious;
in order to define the integral fs f, even in the case where f is continuous on
S, we needed to deal with the function fs, which need not be continuous at
points of Bd S.

However, our primary interest in this book is in integrals of the form [ f,
where f is continuous on S. Therefore we make the following:

Convention. Henceforth, we restrict ourselves in studying integra-
tion theory to the integration of continuous functions f: S — R.

Now we consider conditions under which the integral [ f exists. Even if
we assume f is bounded and continuous on S, we need some sort of condition
involving the set S to ensure that [ f exists. That condition is the following:

Theorem 13.5. Let S be a bounded set in R™; let f: S —R be a
bounded continuous function. Let E be the set of points xo of Bd S for
which the condition

Jim f(x)=0
fails to hold. If E has measure zero, then f is integrable over §.

The converse of this theorem also holds; since we shall not need it, we
leave the proof to the exercises.
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Proof. Let xo be a point of R” not in E. We show that the function fs
is continuous at xg; the theorem follows.

If xo € Int S, then the functions f and fs agree in a neighborhood of xo;
since f is continuous at X, so is fs. If xo € Ext §, then fs vanishes in a
neighborhood of xo. Suppose xo € Bd §; then xo may or may not belong
to S. See Figure 13.2. Since xo ¢ E, we know that f(x) — 0 as x approaches
X, through points of §. Since f is continuous, it follows that f(xo) = 0 if
xo belongs to S. It also follows, since fs(x) equals either f(x) or 0, that
fs(x) — 0, as x approaches xo through points of R*. To show that fs is
continuous at X, we must show that fs(xo) = 0. If xo ¢ S, this follows
by definition. If xo € S, then fs(x0) = f(xo), which vanishes, as noted
earlier. 0O

Xo
Xo

N

Figure 13.2

The same techniques may be used to prove the following theorem, which
is sometimes useful:

Theorem 13.6. Let S be a bounded set in R™; let f: S —R be a
bounded continuous function; let A = Int S. If f is integrable over S,
then f is integrable over A, and [¢ f = [, f.

Proof. Step 1. We show that if fs is continuous at xo, then fy is
continuous and agrees with fs at xo. The proof is easy. If xo € Int S or
xo € Ext S, then fs and f4 agree in a neighborhood of x¢, and the result is
trivial. Let xo € Bd S. Continuity of fs at xo implies that fs(x) — fs(xo)
as X — Xp. Arbitrarily near xo are points x not in S, for which fs(x) = 0;
hence this limit must be 0. Thus fs(xo) = 0. Since f4(x) equals either fs(x)
or 0, we have fs(x) — 0 also as x — Xg. Furthermore, fa(x0) = 0 because
xo ¢ A. Thus f, is continuous at xo and agrees with fs at xo.

Step 2. We prove the theorem. If f is integrable over .S, then fs is

continuous except on a set D of measure zero. Then f4 is continuous at
points not in D, so f is integrable over A. Since fs — f4 vanishes at points
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not in D, we have fQ(fs — fa) = 0, where @ is a rectangle containing S.
Then [ f=[,f O

EXERCISES

1. Let f,g: S — R; assume f and g are integrable over S.
(a) Show that if f and g agree except on a set of measure zero, then
[sf=Js9
(b) Show that if f(x) < g(x) forx € S and [_f = fsg, then f and g
agree except on a set of measure zero.
2. Let A be a rectangle in R¥; let B be a rectangle in R™; let Q = A x B.
Let f:Q — R be a bounded function. Show that if fQ f exists, then

/, )

exists for x € A — D, where D is a set of measure zero in R*.
3. Complete the proof of Corollary 13.4.

4. Let S; and S; be bounded sets in R™; let f : § — R be a bounded
function. Show that if f is integrable over S; and S, then f is integrable

over Sr—Sz, and
[l L
S$1-5, S 51NS3

5. Let S be a bounded set in R”; let f : S — R be a bounded continuous
function; let A = Int S. Give an example where [, f exists and [_f
does not.

6. Show that Theorem 13.6 holds without the hypothesis that f is continuous
on S.

*7. Prove the following:

Theorem. Let S be a bounded set in R™; let f : S — R be a bounded
function. Let D be the set of points of S at which f fails to be
continuous. Let E be the set of points of Bd S at which the condition

lim f(x)=0
X—Xg

fails to hold. Then fsf extsts if and only if D and E have measure

zero.

Proof. (a) Show that fs is continuous at each point xo ¢ D U E.

(b) Let B be the set of isolated points of S; then B C E because the
limit cannot be defined if xo is not a limit point of S. Show that if
fs is continuous at xo, then xo ¢ DU (E — B).

(c) Show that B is countable.

(d) Complete the proof.
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§14. RECTIFIABLE SETS

We now extend the volume function, defined for rectangles, to more general
subsets of R”. Then we relate this notion to integration theory, and extend
the Fubini theorem to certain integrals of the form [ f.

Definition. Let .S be a bounded set in R™. If the constant function
1 is integrable over §, we say that S is rectifiable, and we define the (n-
dimensional) volume of S by the equation

o(S) = /S 1.

Note that this definition agrees with our previous definition of volume when
S is a rectangle.

Theorem 14.1. A subset S of R™is rectifiable if and only if S is
bounded and Bd S has measure zero.

Proof. The function 1 that equals 1 on S and 0 outside S is continuous
on the open sets Ext S and Int S. It fails to be continuous at each point of
BdS. By Theorem 11.2, the function 1s is integrable over a rectangle
containing § if and only if Bd S has measure zero. O

We list some properties of rectifiable sets.

Theorem 14.2. (a) (Positivity). If S is rectifiable, v(S) > 0.

(b) (Monotonicity). If S1 and S, are rectifiable and if S1 C S2, then
’U(Sl) < ’D(Sz).

(c) (Additivity). If Sy and S, are rectifiable, so are 51U 52 and
Sl N Sz, and

v(S1 U S2) = v(S1)+ v(52) — v(S51 N S2).

(d) Suppose S is rectifiable. Then v(S) = 0 if and only if S has
measure zero.

(e) If S is rectifiable, so is the set A= Int §, and v(S5) = v(A).
(f) If S is rectifiable, and if f : § — R is a bounded continuous
function, then f is integrable over S.

Proof. Parts (a), (b), and (c) follow from Theorem 13.3. Part (d) follows
by applying Theorem 11.3 to the non-negative function 1s. Part (e) follows
from Theorem 13.6, and (f) from Theorem 13.5. g
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Let us make a remark on terminology. The concept of volume, as we have
defined it, was called classically the theory of content (or Jordan content).
This terminology distinguishes this concept from a more general one, called
measure (or Lebesgue measure). This concept is important in the develop-
ment of an integral called the Lebesgue integral, which is a generalization of
the Riemann integral.

Measure is defined for a larger class of sets than content is, but the two
concepts agree when both are defined. A “set of measure zero” as we have
defined it is in fact just a set whose Lebesgue measure exists and equals zero.
Such a set need not of course be rectifiable.

A set whose Lebesgue measure is defined is usually called measurable.
But there is no universally accepted corresponding term for a set whose Jordan
content is defined. Some call such sets “Jordan-measurable”; others refer to
such sets as “domains of integration,” because bounded continuous functions
are integrable over such sets. One student suggested to me that a set whose
Jordan content is defined should be called “contented”! I have taken the
term rectifiable, which is commonly used to refer to a curve whose length is
defined, and have adopted it to refer to any set having volume (content).

The class of rectifiable sets in R™ is not easy to describe other than by
the condition stated in Theorem 14.1. It is tempting to think, for instance,
that any bounded open set in R™, or any bounded closed set in R™, should be
rectifiable. That is not the case, as the following example shows:

EXAMPLE 1. We construct a bounded open set A in R such that Bd 4 does
not have measure zero.

The rational numbers in the open interval (0,1) are countable; let us
arrange them in a sequence ¢1,q;,... . Let 0 < a < 1 be fixed. For each i,
choose an open interval (i, ;) of length less than a/2* that contains ¢; and
is contained in (0,1). These intervals will overlap, of course, but that doesn’t
matter. Let A be the following open set of R:

A=(01,b1) ) (ag,bz) U....

We assume Bd A has measure zero and derive a contradiction. Set € =
1 —a. Since Bd A has measure zero, we may cover Bd A by countably many
open intervals of total length less than €. Because A is a subset of [0,1] that
contains each rational in (0,1), we have A = [0,1]. Since A = AU Bd A,
the open intervals covering Bd A, along with the open intervals {(ai, bi) whose
union is A, give an open covering of the interval [0,1]. The total length of
the intervals covering Bd A is less than €, and the total length of the intervals
covering A is less than ) a/2' = a. Because [0,1] is compact, it can be
covered by finitely many of these intervals; the total length of these intervals
is less than € + a < 1. This contradicts Corollary 10.5.

We conclude this section by discussing certain rectifiable sets that are
especially useful; they are called the “simple regions.” For these sets, a version
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of the Fubini theorem holds, as we shall see. We shall use these results only
in the examples and the exercises.

Definition. Let C be a compact rectifiable set in R*~1; let ¢, : C —
R be continuous functions such that ¢(x) < 9(x) for x € C. The subset S
of R" defined by the equation

S={(xt)|x€C and ¢(x)<t<P(x)}
is called a simple region in R".

There is nothing special about the last coordinate here. If k+£=n —1,
and if y and z denote the general points of R* and RY, respectively, then the
set

S ={(y:t,2)|(y,2) €C and ¢(y,2) <t <Y(y,2)}

is also called a simple region in R”.

*Lemma 14.3. If S is a simple region in R*, then S is compact
and rectifiable.

Proof. Let S be a simple region, as in the definition. We show that §
is compact and that Bd S has measure zero.

Step 1. The graph of ¢ is the subset of R” defined by the equation
Gy ={(x,t)|x € C and 1=¢(x)}.
We show that Bd S lies in the union of the three sets G4 and G, and
D= {(x)|xe BdC and ¢(x) <t < P(x)}.

Since each of these sets is contained in S, it follows that Bd S C 5, so that S
is closed. Being bounded, S is thus compact. See Figure 14.1.

Suppose that (xo,%o) belongs to none of the sets G4, Gy, or D. We show
that (xo,%o) lies either in Int S or Ext §. As you can check, there are three
possibilities:

(1) Xp ¢ C’

(2) xo € C and either t5 < @(x0) or £y > P(xg),

(3) xo € Int C and ¢(x0) < to < P(x0).

In case (1), there is a neighborhood U of xq disjoint from C'. Then U x R is
disjoint from S, so that (xo,%) € Ext S.

Consider case (2). Suppose that to < ¢(xo). By continuity of ¢, we can
choose a neighborhood W of (xp, %) such that the function ¢(x)—1 is positive
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Figure 14.1

for x € C and (x,t) € W. Then W is disjoint from S, so that (xg,%) € Ext
S. A similar argument applies if ¢, > ¥(x,).

Consider case (3). By continuity, there is a neighborhood U x V of (xo, o)
in R™ such that U C C and both functions ¢t — ¢(x) and (x) — t are positive
on U x V. Then U x V is contained in 5, so that (xo,%5) € Int S.

Step 2. We show that G4 and G have measure zero.

It suffices to consider the case of Gy. Choose a rectangle ) in R*~!
containing the set C. Given € > 0, let € be the number ¢ = €/20(Q).
Because ¢ is continuous and C is compact, there is, by the theorem on uniform
continuity, a § > 0 such that |{¢(x) — ¢(y)| < € whenever x,y € C and
Ix —y| < 8. Choose a partition P of @ of mesh less than §. If R is a
subrectangle determined by P, and if R intersects C, then |¢(x) — ¢(y)| < €
for x,y € RN C. For each such R, choose a point xg of RN C and define
Ir to be the interval

Ir = [#(xr) — €, $(xr) + €].

Then the n-dimensional rectangle R x Ir contains every point of the form
(x,¢(x)) for which x € CN R. See Figure 14.2.

The rectangles R x I, as R ranges over all subrectangles that intersect
C, thus cover G 4. Their total volume is

Y u(R x Ip) = > v(R)(2€) < 2¢v(Q) = .

R R
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A /RXIR
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Q
Figure 14.2

Step 3. We show the set D has measure zero; then the proof is complete.
Because ¢ and % are continuous and C' is compact, there is a number M such
that

M < P(x) < Yp(x) < M

for x € C. Given € > 0, cover Bd C by rectangles Q1, @2, ... in R*~! of total
volume less than €/2M. Then the rectangles Q; x [-M, M] in R” cover D
and have total volume less than €. O

*Theorem 14.4 (Fubini’s theorem for simple regions). Let
S={(xt)xeC and ¢(x)<t<P(x)}

be a simple region in R™. Let f: S — R be a continuous function. Then
f is integrable over S, and

t=t(x)
fr = [ L 10

Proof. Let Q x [-M, M] be a rectangle in R” containing S. Because f
is continuous and bounded on § and S is rectifiable, f is integrable over S.
Furthermore, for fixed xo € @, the function fs(xg,1) is either identically zero
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(if xo ¢ C), or it is continuous at all but two points of R. We conclude from
Fubini’s theorem that

/Qfs = /er /t:Zfs(x,t)-

Since the inner integral vanishes if x ¢ C, we can write this equation as

[r = [ [

Furthermore, the number fs(x,t) vanishes unless ¢(x) < t < (x), in which
case it equals f(x,t). Therefore we can write

t=y(x)
/ f = / f(x,t). O
S x€C Jt=¢(x)

The preceding theorem gives us a reasonable method for reducing the
n-dimensional integral [, f to lower-dimensional integrals, at least if the in-
tegrand is continuous and the set S is a simple region.

If the set S is not a simple region, one can often in practice express S
as a union of simple regions that overlap in sets of measure zero. Additivity
of the integral tells us that we can evaluate the integral [, f by integrating
over each of these regions separately and adding the results together. Just
as in calculus, the procedure can be reasonably laborious. But at least it is
straightforward.

Of course, there are rectifiable sets that cannot be broken up in this way
into simple regions. Computing integrals over such sets is more difficult. One
way of proceeding is to approximate .S by a union of simple regions and follow
a limiting procedure.
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Figure 14.3

EXAMPLE 2. Suppose one wishes to integrate a continuous function f over
the set .S in R? pictured in Figure 14.3. While S is not a simple region, it is
easy to break S up into simple regions that overlap in sets of measure zero,
as indicated by the dotted lines.

EXAMPLE 3. Consider the set S in R? given by
S={(z,yl1 <2* +y" <4}

it is pictured in Figure 14.4. While S is not a simple region, one can evaluate
an integral over S by breaking S up into two simple regions that overlap in
a set of measure zero, as indicated, and integrating over each of these regions
separately. The limits of integration will be rather unpleasant, of course.

Now if one were actually assigned a problem like this in a calculus course,
one would do no such thing! What one would do instead would be to express
the integral in terms of polar coordinates, thereby obtaining an integral with
much simpler limits of integration.

Expressing a two-dimensional integral in terms of polar coordinates is a
special case of a quite general method for evaluating integrals, which is called
“substitution” or “change of variables.” We shall deal with it in the next
chapter.

Figure 14.4

Let us make one final remark. There is one thing lacking in our discus-
sion of the notion of volume. How do we know that the volume of a set is
independent of its position in space? Said differently, if S is a rectifiable set,
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and if h : R® — R" is a rigid motion (whatever that means), how do we know
that the sets S and h(S) have the same volume?

For example, each of the sets S and T pictured in Figure 14.5 represents
a square with edge length 5; in fact T is obtained by rotating S through
the angle § = arctan 3/4. It is immediate from the definition that S has
volume 25. It is clear that 7 is rectifiable, for it is a simple region. But how
do we know T has volume 25?

(1,7)
(0,5) (5,5)
/) _
%/ ( 3’4) (4’3)
3, % ’
(5,0) |

Figure 14.5

One can of course simply calculate v(T’). One way to proceed is to write
equations for the functions 9(z) and ¢(x) whose graphs bound T above and
below respectively, and to integrate the function () — ¢(z) over the interval
[—3,4]. See Figure 14.6.

Another way to proceed is to enclose T in a rectangle @, take a partition P
of @, and calculate the upper and lower sums of the function 17 with respect
to P. The lower sum equals the total area of all subrectangles contained in T,

/y = (x)
T
Py = P(x)
I 1
-3 4

Figure 14.6
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while the upper sum equals the total area of all subrectangles that intersect 7".
One needs to show that

L(lTaP) <2< U(IT’P)

for all P. See Figure 14.7.
Neither of these procedures is especially appealing! What one needs is a
general theorem. In the next chapter, we shall prove the following result:
Suppose h : R® — R" is a function satisfying the condition

lA(x) — h(¥)Il = x|l

for all x,y € R™; such a function is called an isometry. If S is a rectifiable
set in R™, then the set T = h(S) is also rectifiable, and v(T') = v(5).

NI A V)
W AA Y/A//
i '/ WL
4074 ,/ / N\ //
@Y
/ AAHILE )
/A1 N4
/ A | ////// /.

Figure 14.7

EXERCISES

1. Let S be a bounded set in R™ that is the union of the countable collection
of rectifiable sets Sy, Sa,... .

(a) Show that S;U---U S, is rectifiable.
(b) Give an example showing that S need not be rectifiable.
2. Show that if S; and S; are rectifiable, so is S; — S>, and

v(S1 — 82) = v(S1) — v(S1 N S52).

3. Show that if A is a nonempty, rectifiable open set in R™, then v{A) > 0.

4. Give an example of a bounded set of measure zero that is rectifiable, and
an example of a bounded set of measure zero that is not rectifiable.

5. Find a bounded closed set in R that is not rectifiable.
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6. Let A be a bounded open set in R™; let f : R® — R be a bounded
continuous function. Give an example where IX [ exists but [ 4 f does
not.

7. Let S be a bounded set in R™.
(a) Show that if S is rectifiable, then so is the set S, and v(S) = v(S).
(b) Give an example where S and Int S are rectifiable, but S is not.

8. Let A and B be rectangles in R* and R™, respectively. Let S be a set
contained in A x B. For each y € B, let

y={x|x€A and (x,y) €S}

We call Sy a cross-section of S. Show that if S is rectifiable, and if Sy
is rectifiable for each y € B, then

v(S)=/ Bu(s,).
Y€
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§15. IMPROPER INTEGRALS

We now extend our notion of the integral. We define the integral fs f in the
case where S is not necessarily bounded and f is not necessarily bounded.
Such an integral is sometimes called an improper integral.

We shall define our extended notion of the integral only in the case
where S is open in R™,

Definition. Let A be an open set in R?; let f : A — R be a continuous
function. If f is non-negative on A, we define the (extended) integral of f
over A, denoted [, f, to be the supremum of the numbers [, f, as D ranges
over all compact rectifiable subsets of A, provided this supremum exists. In
this case, we say that f is integrable over A (in the extended sense). More
generally, if f is an arbitrary continuous function on A, set

f+(x) = max{f(x),0} and f_(x) = max{~f(x),0}.

We say that f is integrable over A (in the extended sense) if both f, and
f- are; and in this case we set

[r=[ 1= 1

where [, denotes the extended integral throughout.
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If A is open in R® and both f and A are bounded, we now have two
different meanings for the symbol [, f. It could mean the extended integral,
or it could mean the ordinary integral. It turns out that if the ordinary
integral exists, then so does the extended integral and the two integrals are
equal. Nevertheless, some ambiguity persists, because the extended integral
may exist when the ordinary integral does not. To avoid ambiguity, we make
the following convention:

Convention. If A is an open set in R®, then [, f will denote the
extended integral unless specifically stated otherwise.

Of course, if A is not open, there is no ambiguity; [ ", f must denote the
ordinary integral in this case.

We now give a reformulation of the definition of the extended integral that
is convenient for many purposes. It is related to the way improper integrals
are defined in calculus. We begin with a preliminary lemma:

Lemma 15.1. Let A be an open set in R*. Then there ezists a
sequence Cy, C,, ... of compact rectifiable subsets of A whose union is
A, such that Cy C Int Cn4y for each N.

Proof. Let d denote the sup metric d(x,y) = |x—y|on R*. If B C R",
let d(x, B) denote the distance from x to B, as usual. (See §4.)
Now set B = R® — A. Then given a positive integer N, let Dy denote
the set
Dy ={x|d(x,B)>1/N and d(x,0) < N}.

Since d(x,B) and d(x,0) are continuous functions of x (see the proof of The-
orem 4.6), Dy is a closed subset of R”. Because Dy is contained in the cube
of radius N centered at 0, it is bounded and thus compact. Also, Dy is
contained in A, since the inequality d(x,B) > 1/N implies that x cannot be
in B. To show the sets D cover A, let x be a point of A. Since A is open,
d(x,B) > 0; then there is an N such that d(x,B) > 1/N and d(x,0) < N,
so that x € Dy. Finally, we note that the set

Ay ={x|d(x,B) > 1/(N +1) and d(x,0) < N +1}

is open (because d(x,B) and d(x,0) are continuous). Since Ay 4, is contained
in Dy41 and contains Dy by definition, it follows that Dy C Int Dy,
See Figure 15.1.

The sets Dy are not quite the sets we want, since they may not be
rectifiable. We construct the sets Cn as follows: For each x € Dy, choose a
closed cube that is centered at x and is contained in Int Dy 1. The interiors
of these cubes cover Dy ; choose finitely many of them whose interiors cover
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Figure 15.1

Dy and let their union be Cn. Since Cy is a finite union of rectangles, it is
compact and rectifiable. Then

Dy C Int Cy C Cn C Int Dyyy.

It follows that the union of the sets Cy equals A and that Cny C Int Civy,
foreach N. O

Now we obtain our alternate formulation of the definition:

Theorem 15.2. Let A be open inR"; let f : A — R be continuous.
Choose a sequence C of compact rectifiable subsets of A whose union
is A such that Cny C Int Cnyy for each N. Then f is integrable over A
if and only if the sequence Jey |f] is bounded. In this case,

= lim .
Af N-—o0 CNf

It follows from this theorem that f is integrable over A if and only if | f|
is integrable over A.

Proof. Step 1. We prove the theorem first in the case where f is
non-negative. Here f = |f|. Since the sequence Jc, [ is increasing (by
monotonicity), it converges if and only if it is bounded.
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Suppose first that f is integrable over A. If we let D range over all
compact rectifiable subsets of A, then

CNszupD{/Df}=/Af,

since Cy is itself a compact rectifiable subset of A. It follows that the sequence

fc,, f is bounded, and
lim f< / f-

Conversely, suppose the sequence fCN f is bounded. Let D be an arbi-
trary compact rectifiable subset of A. Then D is covered by the open sets

IntCyCc ImtCyC -+,

hence by finitely many of them, and hence by one of them, say Int Chur. Then

/fs f<am [ f
D Cum N—o0 Cn

Since D is arbitrary, it follows that f is integrable over A, and

f < lim f.
A N—oo CN

Step 2. Now let f : A — R be an arbitrary continuous function. By
definition, f is integrable over A if and only if f4 and f- are integrable over A;

this occurs if and only if the sequences fCN f+ and ch f- are bounded, by
Step 1. Note that

0< fi(x) <|f(x) and 0< fo(x) <|f()],
while
1f(0)l = f1(x) + f-(x)-
It follows that the sequences [, f4 and fCN f- are bounded if and only if the
sequence fCN | f] is bounded. In this case, the former two sequences converge

to [, f+ and [, f-, respectively. Since convergent sequences can be added
term-by-term, the sequence

/CNf= CNf+—/CNf_

converges to [, fr — [, f-; and the latter equals J f by definition. O

We now verify the properties of the extended integral; many are analogous
to those of the ordinary integral. Then we relate the extended integral to the
ordinary integral in the case where both are defined.
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Theorem 15.3. Let A be an open set inR™. Let f,g: A — R be
continuous functions.

(a) (Linearity). If f and g are integrable over A, so is af + bg; and

[@r+bg = aff + vfo

(b) (Comparison). Let f and g be integrable over A. If f(x) < g(x)
for x € A, then
/fs/y
A A

TREINL

(c) (Monotonicity). Assume B is open and B C A. If f is non-
negative on A and integrable over A, then f is integrable over B and

IREIN

(d) (Additivity). Suppose A and B are open in R" and f is contin-
uous on A U B. If f is integrable on A and B, then f is integrable on
AUB and AnB, and

Jun? = L7 5= Lo

Note that by our convention, the integral symbol denotes the extended
integral throughout the statement of this theorem.

In particular,

Proof. Let Cn be a sequence of compact rectifiable sets whose union is
A, such that Cy C Int Cnyy forall N.

(a) We have

/CNlaf+bgl < lal/CNIfl + |b|/CN|g|,

by the comparison and linearity properties of the ordinary integral. Since both
sequences [, |f|and fCN |g| are bounded, so is ., |af+bg|. Linearity now
follows by taﬁing limits in the equation

/CN(af+bg) = a/CNf + bCNg.
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(b) If f(x) < g(x), one takes limits in the inequality

/CNfS/CNg-

(¢) If D is a compact rectifiable subset of B, then D is also a compact

rectifiable subset of A, so that
INEIRL
D A

by definition. Since D is arbitrary, f is integrable over B and e f< i/
(d) Let Dy be a sequence of compact rectifiable sets whose union is B
such that Dy C Int Dy for each N. Let

EN=CNUDN and FN:CNﬂDN.

Then Ey and Fi are sequences of compact rectifiable sets whose unions equal
AU B and AN B, respectively. See Figure 15.2.

Figure 15.2

We show Ex C Int Eny; and Fy C Int Fyyi. f x € En, then x is in
either Cy or Dy. If the former, then some neighborhood of x is contained in
CnN41- If the latter, some neighborhood of x is contained in Dy41. In either
case, this neighborhood of x is contained in En41, so that x € Int Enii.

Similarly, if x € Fy, then some neighborhood U of x is contained in
Cn+1, and some neighborhood of V' of x is contained in Dy41. The neigh-
borhood U NV of x is thus contained in Fiy41, so that x € Int Fiy1.
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Additivity of the ordinary integral tells us that

(%) .LNf=£wf+Amf— [ 7

Applying this equation to the function |f], we see that fEN | f| and fFN | fl

are bounded above by
fon+ [ an
Cn Dy

Thus f is integrable over AU B and AN B. The desired equation now follows
by taking limits in (x). O

Now we relate the extended integral to the ordinary integral.

Theorem 15.4. Let A be a bounded open set in R*; let f : A —
R be a bounded continuous function. Then the extended integral [, f
ezists. If the ordinary integral [, f also exists, then these two integrals

are equal.

Proof. Let () be arectangle containing A.

Step 1. We show the extended integral of f exists. Choose M so that
|f(z)] £ M for x € A. Then for any compact rectifiable subset D of A,

[ins [ m<mvQ.

Thus f is integrable over A in the extended sense.

Step 2. We consider the case where f is non-negative. Suppose the
ordinary integral of f over A exists. It equals, by definition, the integral
over @ of the function f4. If D is a compact rectifiable subset of A, then

/ f=/ fa because f=fa on D,
D D
< / fa by monotonicity,
Q
= (ordinary) / f-
A
Since D is arbitrary, it follows that

(extended) /A f < (ordinary) /A f-
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Figure 15.3

On the other hand, let P be a partition of ¢, and let R denote the general
subrectangle determined by P. Denote by R,, ..., R those subrectangles
that liein A, and let D = R, U --- U K;. See Figure 15.3. Now

k
L(fasPY= Y- ma(f) - o(Rs),

because mp(fa) = mgr(f) if R is contained in A and mg(fa) = 0if R is not
contained in A. On the other hand,

A

k k
Z mp,(f)-v(Ri) < Z / f by the comparison property,
i=1 i=1 Vi

/ f by additivity,
D

IA

(extended) / f by definition.
A
Since P is arbitrary, we conclude that
(ordinary) / f < (extended) / f.
A A

Step 8. Now we consider the general case. Write f = f, — f_, as usual.
Since f is integrable over A in the ordinary sense, so are fy and f_, by



§15. Improper Integrals

Lemma 13.2. Then
(ordinary) / f = (ordinary) / f+ — (ordinary) / f- by linearity,
A A A

= (extended) /f+— (extended) /f_ by Step 2,
A A

(extended) / f by definition. [
A

EXAMPLE 1. If A is a bounded open set in R” and f: A — R is a bounded
continuous function, then the extended integral fA [ exists, but the ordinary
integral fA f may not. For example, let A be the open subset of R constructed
in Example 1 of §14. The set A is bounded, but Bd A does not have measure
zero. Then the ordinary integral fAl does not exist, although the extended

integral fAl does.

A consequence of the preceding theorem is the following:

Corollary 15.5. Let S be a bounded set in R*; let f : S — R be a
bounded continuous function. If f is integrable over S in the ordinary
sense, then

(ordinary) /f = (extended) .
s

Int §

Proof. One applies Theorems 13.6 and 15.4. O

This corollary tells us that any theorem we prove about extended integrals
has implications for ordinary integrals. The change of variables theorem,
which we prove in the next chapter, is an important example.

We have already given two formulations of the definition of the extended
integral, and we will give another in the next chapter. All these versions of
the definition are useful for different theoretical purposes. Actually applying
them to computational problems can be a bit awkward, however. Here is a
formulation that is useful in many practical situations. We shall use it in some
of the examples and exercises:
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*Theorem 15.6. Let A be open inR"; let f : A — R be continuous.
Let Uy c U, C --- be a sequence of open sets whose union is A. Then
[, [ exists if and only if the sequence Ju, |f| exists and is bounded; in

this case,
= lim .
-/A f N—oo UN f

Proof. It suffices, as usual, to consider the case where f is non-negative.
Suppose the integral [ 4 f exists. Monotonicity of the extended integral
implies that f is integrable over Un and that for each N,

/UNfs /.1

It follows that the increasing sequence fUN f converges, and that

Jim /UNfs /Af-

Conversely, suppose the sequence fUN f exists and is bounded. Let D
be a compact rectifiable subset of A. Since D is covered by the open sets
U, c U, C ---, it is covered by finitely many of them, and hence by one of
them, say Ups. Then, by definition,

/ng [ r<ym [ 5

Since D is arbitrary,

/Afglim f. O

N—oo UN

In applying this theorem, we usually choose Uy so that it is rectifiable
and f is bounded on Uy; then the integral f;, f exists as an ordinary in-
tegral (and hence as an extended integral) and can be computed by familiar
techniques. See the examples following.
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EXAMPLE 2. Let A be the open set in R? defined by the equation
A={(z,y) |z >1 and y>1}.

Let f(z,y) = 1/2%y®. Then f is bounded on A4, but A is unbounded. We
could use Theorem 15.2 to calculate fA f, by setting Cn = [(N +1)/N, NJ?
and integrating f over Cn. It is a bit easier to use Theorem 15.6, setting
Un = (1, N)? and integrating f over Un. See Figure 15.4. The set Un is
rectifiable; f is bounded on Uy because Uy is compact and f is continuous
on Un. Thus IUN f exists as an ordinary integral, so we can apply the Fubini

theorem. We compute

/UN r= /=—N /N 1/2%y* = (N = 1)/N)’.

We conclude that fA f=1L

EXAMPLE 3. Let B = (0,1)%; let f(z,y) = 1/z%y?, as before. Here B is
bounded but f is not bounded on B; indeed, f is unbounded near each point
of the = and y axes. However, if we set Un = (1/N,1)?, then f is bounded
on Un. See Figure 15.5. We compute

f=(-1+N)%.
Un

We conclude that fB f does not exist.
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EXERCISES

1. Let f: R — R be the function f(z) = z. Show that, given A €R, there
exists a sequence Cn of compact rectifiable subsets of R whose union is
R, such that Cx C Int Cn4i for each N and

lim / f=A
N =0 Cn

Does the extended integral f' S exist?

2. Let A be open in R"; let f,g : A — R be continuous; suppose that
|f(x)] < g(x) for x € A. Show that if [, g exists, so does [, f- (This
result is analogous to the so-called “comparison test” for the convergence
of an infinite series.)

3. (a) Let A and B be the sets of Examples 2 and 3; let f(z,y) = 1/(zy) .
Determine whether fA f and fo exist; if either does, calculate it.

(b) Let C={(z,y) | £ > 0 and y > 0}. Let
flz,y) =1/(2" + V) (¥" + VD).

Show that fcf exists; do not attempt to calculate it.
4. Let f(z,y) =1/(y +1)*. Let A and B be the open sets

A={(z,y)|z>0 and z<y<2z}
B={(z,y)|z>0 and z? < y < 22°}),

of R%. Show that fAf does not exist; show that fo does exist and
calculate it. See Figure 15.6.

Figure 15.6
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. Let f(z,y) = 1/z(zy)*/* for £ > 0 and y > 0. Let

Ao={(z,y)|0<z <1 and z<y<2z}
By={(z,y)|0<z <1 and z°’<y<2s%).

Determine whether on f and fBo S exist; if so, calculate.

. Let A be the set in R? defined by the equation

A={(z,y)|z>1 and 0<y<1l/z}.

Calculate fA 1/zy! /2 if it exists.

Let A be a bounded open set in R™; let f : A — R be a bounded
continuous function. Let () be a rectangle containing A. Show that

Lf=1q(f+)A—Zq(f-)A.

Let A be open in R”. We say f : A — R is locally bounded on A4 if
each x in A has a neighborhood on which f is bounded. Let F(A) be
the set of all functions f : A — R that are locally bounded on A and
continuous on A except on a set of measure zero.

(2) Show that if f is continuous on A, then f € F(A).

(b) Show that if f is in F(A), then f is bounded on each compact subset
of A and the definition of the extended integral fA f goes through
without change.

(c) Show that Theorem 15.3 holds for functions f in F(A).

(d) Show that Theorem 15.4 holds if the word “continuous” in the hy-
pothesis is replaced by “continuous except on a set of measure zero.”






Change of Variables

In evaluating the integral of a function of a single variable, one of the most
useful tools is the so-called “substitution rule.” It is used in calculus, for
example, to evaluate such an integral as

/1(2:22 + 1)!°(42) dz;

one makes the substitution y = 222 4 1, reducing this integral to the integral

3
/ y'° dy,
1

which is easy to evaluate. (Here we use the “dz” and “dy” notation of calcu-
lus.)

Our intention in this chapter is to generalize the substitution rule in two

ways:

(1) We shall deal with n-dimensional integrals rather than one-dimen-
sional integrals.

(2) We shall prove it for the extended integral, rather than merely for
integrals of bounded functions over bounded sets. This will require
us to limit ourselves to integrals over open sets in R®, but, as Corol-
lary 15.5 shows, this is not a serious restriction.

We call the generalized version of the substitution rule the change of vari-
ables theorem.
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§16. PARTITIONS OF UNITY

In order to prove the change of variables theorem, we need to reformulate the
definition of the extended integral [, f. This integral is obtained by breaking
the set A up into compact rectifiable sets Cn, and taking the limit of the
corresponding integrals ch f. In our new approach, we instead break the
function f up into functions fy, each of which vanishes outside a compact set,
and we take the limit of the corresponding integrals [, fy. This approach has
many advantages, especially for theoretical purposes; it will recur throughout
the rest of the book.

This approach involves a notion of comparatively recent origin in mathe-
matics, called a “partition of unity,” which we define in this section.

We begin with several lemmas.

Lemma 16.1. Let Q be a rectangle in R™. There is a C* function
¢ :R™ = R such that ¢(x) > 0 for x € Int @ and ¢(x) = 0 otherwise.

Proof. Let f:R — R be defined by the equation
e~Y7 ifz >0,
f(z)= { '
0 otherwise.

Then f(z) > 0 for > 0. It is a standard result of single-variable analysis
that f is of class C®. (A proof is outlined in the exercises.) Define

9(z) = f(z)- f(1 - z).

Then g is of class C'°°; furthermore, g is positive for 0 < < 1 and vanishes
otherwise. See Figure 16.1. Finally, if

y=f(z) y =g(z)

Figure 16.1
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@ =la1,b1] x --- x [@,, b,],
_ Ty —ay . T — Qg z, — G,
¢(x)_g(b1_al> g(bz—ﬂz) g(bn_an>. D

Lemma 16.2. Let A be a collection of open sets in R™; let A be
their union. Then there exists a countable collection Q,, Q», ... of
rectangles contained in A such that:

(1) The sets Int Q; cover A.

(2) Each Q; is contained in an element of A.

(3) Each point of A has a neighborhood that intersects only finitely

many of the sets Q;.

define

Proof. Tt is not difficult to find rectangles Q; satisfying (1) and (2).
Choosing them so they also satisfy (3), the so-called “local finiteness condi-
tion,” is more difficult.

Step 1. Let Dy, D,, ... be a sequence of compact subsets of A whose
union is A, such that D; C Int D;;, for each ¢. For convenience in notation,
let D; denote the empty set for ¢ < 0. Then for each 7, define

B,' = D,‘ — Int -Di—l'

The set B; is bounded, being a subset of D;; and it is closed, being the
intersection of the closed sets D; and R® —Int D;_;. Thus B; is compact.
Also, B; is disjoint from the closed set D;_,, since D;_, C Int D;_;. For
each x € B;, we choose a closed cube Cy centered at x that is contained in A
and is disjoint from D;_,; also choose Cx small enough that it is contained
in an element of the collection of open sets A. See Figure 16.2.

Cx

D; X
D;_,

Di_,

Figure 16.2
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The interiors of the cubes Cx cover B;; choose finitely many of these
cubes whose interiors cover Bj;; let C; denote this finite collection of cubes.

See Figure 16.3.

r i

y.

Y

C;

Figure 16.3

Step 2. Let C be the collection
C=CiUuCU---;

then C is a countable collection of rectangles (in fact, of cubes). We show this
collection satisfies the requirements of the lemma.

By construction, each element of C is a rectangle contained in an element
of the collection .A. We show that the interiors of these rectangles cover A.
Given x € A, let i be the smallest integer such that x € Int D;. Then x is
an element of the set B; = D; — Int D;_,. Since the interiors of the cubes
belonging to the collection C; cover B, the point x lies interior to one of these
cubes.

Finally, we check the local finiteness condition. Given x, we have x €
Int D; for some i. Each cube belonging to one of the collections C;2,Ciys, - .
is disjoint from D;, by construction. Therefore the open set Int D; can inter-
sect only the cubes belonging to one of the collections Ci,...,Ciy1. Thus x
has a neighborhood that intersects only finitely many cubes from the collec-
tion . 0O

We remark that the local finiteness condition holds for each point x of
A, but it does not hold for a point x of Bd A. Each neighborhood of such a
point necessarily intersects infinitely many of the cubes from the collection C,
as you can check.
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Definition. If ¢ : R® — R, then the support of ¢ is defined to be
the closure of the set {x | ¢(x) # 0}. Said differently, the support of ¢
is characterized by the property that if x ¢ Support ¢, then there is some
neighborhood of x on which the function ¢ vanishes identically.

Theorem 16.3 (Existence of a partition of unity). Let A be
a collection of open sets in R™; let A be their union. There ezists a
sequence ¢y, Pq,... of continuous functions ¢; : R® — R such that:

(1) ¢i(x) >0 for all x.

(2) The set S; = Support ¢; is contained in A.

(3) Each point of A has a neighborhood that intersects only finitely
many of the sets S;.

(4) 32, di(x) =1 for each x € A.

(5) The functions ¢; are of class C™.

(6) The sets S; are compact.

(7) For each i, the set S; is contained in an element of A.

A collection of functions {¢;} satisfying conditions (1)-(4) is called a
partition of unity on A. If it satisfies (5), it is said to be of class C*; if
it satisfies (6), it is said to have compact supports; if it satisfies (7), it said
to be dominated by the collection A.

Proof. Given A and A, let Q1,Q3, ... be a sequence of rectangles in A
satisfying the conditions stated in Lemma 16.2. For each 7, let %; : R® — R be
a C* function that is positive on Int Q; and zero elsewhere. Then Yi(x) >0
for all x. Furthermore, Support 9; = @Q;; the latter is a compact subset
of A that is contained in an element of A. Finally, each point of A has a
neighborhood that intersects only finitely many of the sets Q;. The collection
{#:} thus satisfies all the conditions of our theorem except for (4).

Condition (3) tells us that for x € A, only finitely many of the numbers
¥1(x), ¥2(x), ... are non-zero. Thus the series

Mx) = 3o wi(x)

converges trivially. Because each x € A has a neighborhood on which A(x)
equals a finite sum of C* functions, A(x) is of class C*. Finally, A(x) > 0
for each x € A; given x, there is a rectangle ; whose interior contains X,
whence 1;(x) > 0. We now define

&i(x) = Pi(x) [ A(x);

the functions ¢; satisfy all of the conditions of our theorem. O
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Conditions (1) and (4) imply that, for each x € A, the numbers @i(x)
actually “partition unity,” that is, they express the unity element 1 as a sum of
non-negative numbers. The local finiteness condition (3) has the consequence
that for any compact set C' contained in A, there is an open set about C
on which ¢; vanishes identically except for finitely many 1. To find such an
open set, one covers C by finitely many neighborhoods, on each of which ¢;
vanishes except for finitely many ¢; then one takes the union of this finite
collection of neighborhoods.

EXAMPLE 1. Let f: R — R be defined by the equation

(1+cosz)/2 for - <z <,
f(z) =
0 otherwise.

Then f is of class C*. For each integer m > 0, set d2m41(z) = f(z — mm).
For each integer m > 1, set ¢om(z) = f(z + mn). Then the collection {¢:}
forms a partition of unity on R. The support S: of ¢ is a closed interval of the
form [k~ , (k+2)7], which is compact, and each point of R has a neighborhood
that intersects at most three of the sets S;. We leave it to you to check that
3" ¢i(z) = 1. Thus {¢:} is a partition of unity on R. See Figure 16.4.

¢4 ¢2 ¢1 ¢3 ¢5
— -——— ——— - -
\\</’ ~ -~ \\x/’ \\x//
PN N\
| l/ S \\\ /, /, \\; | 4/ So )
-2 -7 T 2T 3r
Figure 16.4

Now we explore the connection between partitions of unity and the ex-
tended integral. We need a preliminary lemma:

Lemma 16.4. Let A be open inR"; let f : A — R be continuous.
If f vanishes outside the compact subset C of A, then the integrals [, f
and [, f exist and are equal.
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Proof. The integral [, f exists because C is bounded, and the function
fc' which equals f on A and vanishes outside C, is continuous and bounded
on all of R".

Let C; be a sequence of compact rectifiable sets whose union is A, such
that C; C Int Cjq for each 4. Then C is covered by finitely many sets Int C;,
and hence by one of them, say Int Cps. Since f vanishes outside C,

L=l

for all N > M. Applying this fact to the function | f| shows that lim Jou ]
exists, so that f is integrable over A; applying it to f shows that Jof=

limeNfzfAf. O

Theorem 16.5. Let A be open inR™; let f : A — R be continuous.
Let {¢:} be a partition of unity on A having compact supports. The
integral [, f exists if and only if the series

i (40

converges; in this case,
= E o; f1.
/‘; f i=1 [‘/‘4 f]

Note that the integral | 4 @i f exists and equals the ordinary integral
[s, #if (where S; = Support ¢;) by the preceding lemma.

Proof. We consider first the case where f is non-negative on A.

Step 1. Suppose f is non-negative on A, and suppose the series
Y[ ¢i f] converges. We show that [, f exists and

/Afsé[/ﬁf].

Let D be a compact rectifiable subset of A. There exists an M such that for
all 2 > M, the function ¢; vanishes identically on D. Then

M
fx) =) ¢i(x)f(x)

i=1
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for x € D. We conclude that

/D f= é [‘/D &i f] by linearity,

M
< Z [ ¢:f] by monotonicity,
i=1 Dus;

{ / &i f] by the preceding lemma,
A

[ 40
A
_ It follows that f is integrable over A, and
< Sl
IRE > [ &

Step 2. Suppose f is non-negative on A, and suppose f is integrable
over A. We show the series Y[ [, ¢: f] converges, and

2[L¢;ﬂsAf-

Given N, the set D = §; U --- U Sy is compact. Furthermore, for
i=1,..., N, the function ¢; f vanishes outside D, so that

/A¢.~f=/D¢>.-f

by the preceding lemma. We conclude that

N N
§{A¢iﬂ=§[/l)¢if]

M
=2
i=1

)
<)
i=1

N
:/[Z¢,f] by linearity,
D iz

< / f by the comparison property,

D
S/Af.
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Thus the series 3 [[, ¢i f] converges because its partial sums are bounded,
and its sum is less than or equal to fA f.
The theorem is now proved for non-negative functions f.

Step 3. Consider the case of an arbitrary continuous function f: A —
R. By Theorem 15.2, the integral [, f exists if and only if the integral [, |f|
exists, and this occurs if and only if the series

f: ([ 871

converges, by Steps 1 and 2.
On the other hand, if [, f exists, then

/Af=/Af+*/Af_ by definition,

=Z[/A¢’if+]—2[/‘4¢if_] by Steps 1 and 2,

= ; [/A é: f] by linearity,

since convergent series can be added term-by-term. 0O

EXERCISES

1. Prove that the function f of Lemma 16.1 is of class C*® as follows: Given
any integer nn > 0, define f, : R — R by the equation

fn(l') = {(()6_1/1)/1"" for z > 0,

for z < 0.

{(a) Show that f, is continuous at 0. [Hint: Show that a < e° for all a.
Then set a = t/2n to conclude that

n n
Set t = 1/z and let  approach 0 through positive values.)

(b) Show that f, is differentiable at 0.

(c) Show that fi(z) = fa+2(2) — nfnsi(z) for all z.

(d) Show that f, is of class C'*™.
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2. Show that the functions defined in Example 1 form a partition of unity
on R. [Hint: Let fm(z) = f(z — mx), for all integers m. Show that
3 fam(2) = (1 + cos z)/2. Then find 5" fomsr(2).)

3. (a) Let S be an arbitrary subset of R"; let Xo € S. We say that the func-
tion f : S — R is differentiable at xo, of class C", provided there
is a C" function g : U — R defined in a neighborhood U of xo in
R", such that g agrees with f on the set U N S. In this case, show
that if ¢ : R® — R is a C” function whose support lies in U, then
the function

x)g(x) forx e U,
h(x)={¢( )g(x)

0 for x ¢ Support ¢,

is well-defined and of class C" on R".
(b) Prove the following:
Theorem. If f : S — R and f is differentiable of class C"

at each point xo of S, then f may be extended to a C" function
h:A — R that is defined on an open set A of R® containing S.

[Hint: Cover S by appropriately chosen neighborhoods, let A be
their union, and take a C* partition of unity on A dominated by
this collection of neighborhoods.]

§17. THE CHANGE OF VARIABLES THEOREM

Now we discuss the general change of variables theorem. We begin by review-
ing the version of it used in calculus; although this version is usually proved
in a first course in single-variable analysis, we reprove it here.

Recall the common convention that if f is integrable over [a,b], then one

defines . ,
=]

Theorem 17.1 (Substitution rule). Let I ={a,b]. Letg:I — R
be a function of class C', with g'(z) # 0 for z € (a,b). Then the set
g(I) is a closed interval J with end points g(a) and g(b). If f: J —R

is continuous, then
9(b) b ,
/ f= / (fo9),
9(a) a
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/J f= /, (fog)lg|-

Proof.  Continuity of ¢’ and the intermediate-value theorem imply that
either ¢'(z) > 0 or ¢’(x) < 0 on all of (a,b). Hence g is either strictly
increasing or strictly decreasing on I, by the mean-value theorem, so that ¢
is one-to-one. In the case where ¢’ > 0, we have g(a) < g(b); in the case
where g’ < 0, we have g(a) > g(b). In either case, let J = [c,d] denote the
interval with end points g(a) and g(b). See Figure 17.1. The intermediate-
value theorem implies that g carries I onto J. Then the composite function
f(g(z)) is defined for all z in [a,b], so the theorem at least makes sense.

or equivalently,

dl- d -
y=g(z) y=g(z)

cr C -

1 ) ] ]

a b a b

g' >0 g'<o
Figure 17.1
Define

y
Fw=[1
[
for y in [c,d]. Because f is continuous, the fundamental theorem of calculus

implies that F”(y) = f(y). Consider the composite function h(z) = F(g(2));
we differentiate it by the chain rule. We have

h(z) = F'(g(2))g'(z) = f(9(2))g'(2).

Because the latter function is continuous, we can apply the fundamental the-
orem of calculus to integrate it. We have

r=b
/ f(9())¢(2) = h(b) - h(a)

= F(g(b)) — F(g(a))

9(%) g(a)
=["r - /.
[ c
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Now c equals either g(a) or g(b). In either case, this equation can be written
in the form

(+) / "(foa) = / ((;’) .

This is the first of our desired formulas.
Now in the case where ¢’ > 0, we have J = [g(a), g(b)]. Since |g'| = ¢’
in this case, equation (*) can be written in the form

(+5) Jseang1= [ 5

In the case where ¢’ < 0, we have J = [g(b),g(a)]. Since |g’| = —¢’ in this

case, equation (%) can again be written in the form (xx).

EXAMPLE 1. Consider the integral

/m(zm2 +1)'%(4z).

=0

Set f(y) = y'° and g(z) = 222 + 1. Then ¢g'(z) = 4z, which is positive for
0 < z < 1. See Figure 17.2. The substitution rule implies that

/,:1(2’2+1)1°(4“’)= /z ::lf(g(z))g'(z)= " fw) = /; "y,

y=1l =1

-1 y=g(z)

1 -x/2 /2

Figure 17.2 Figure 17.3
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EXAMPLE 2. Consider the integral

y=1
IR
y=-1

In calculus one proceeds as follows: Set y = g(z) = sinz for —7/2 < z <
7/2. Then ¢'(z) = cosz, which is positive on (—7/2,7/2) and satisfies
the conditions g(—7/2) = —1 and g(x/2) = 1. See Figure 17.3. If f(y) is
continuous on the interval [—1,1], then the substitution rule tells us that

/_11 f= /_:,;(fo 99

Applying this rule to the function f(y) = 1/(1 — ¥?)!/?, we have

1 T w/
/ 1/(1 - y*)*/? =/ " [1/(1 = sin® 2)'/?) cosz:/ ’ 1=m.

—-nf2 —-nf2
Thus the problem seems to be solved.
However, there is a difficulty here. The substitution rule does not apply in
this case, for the function f(y) is not continuous on the interval -1 < y < 1!
The integral of f is in fact an improper integral, since f is not even bounded
on the interval (-1,1).

As indicated earlier, we shall generalize the substitution rule to n-dimen-

sional integrals, and we shall prove it for the extended integral rather than
merely for the ordinary integral. One reason is that the extended integral is
actually easier to work with in this context than the ordinary integral. The
other is that even in elementary problems one often needs to use the substi-
tution rule in a situation where Theorem 17.1 does not apply, as Example 2
shows.

If we are to generalize this rule, we need to determine what a “substi-

tution” or a “change of variables” is to be, in an n-dimensional extended
integral. It is the following:

Definition. Let A be open in R®. Let g : A — R” be a one-to-one

function of class C", such that det Dg(x) # 0 for x € A. Then g is called a
change of variables in R".

An equivalent notion is the following: If A and B are open sets in R”

and if g : A — B is a one-to-one function carrying A onto B such that both
g and g~! are of class C", then g is called a diffeomorphism (of class C").
Now if g is a diffeomorphism, then the chain rule implies that Dg is non-
singular, so that det Dg # 0; thus g is also a change of variables. Conversely,
if g : A > R” is a change of variables in R”, then Theorem 8.2 tells us that
the set B = g(A) is open in R™ and the function g~! : B — A is of class

Cr.

Thus the terms “diffeomorphism” and “change of variables” are different

terms for the same concept.

We now state the general change of variables theorem:
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Theorem 17.2 (Change of variables theorem). Letg: A — B
be a diffeomorphism of open sets in R*. Let f : B — R be a contin-
uous function. Then f is integrable over B if and only if the function
(f 0 g)|det Dg| is integrable over A; in this case,

[ £= [ (ooiaeDgl

Note that in the special case n = 1, the derivative Dg is the 1 by 1 matrix
whose entry is ¢’. Thus this theorem includes the classical substitution rule
as a special case. It includes more, of course, since the integrals involved
are extended integrals. It justifies, for example, the computations made in
Example 2.

We shall prove this theorem in a later section. For the present, let us
illustrate how it can be used to justify computations commonly made in mul-
tivariable calculus.

EXAMPLE 3. Let B be the open set in R? defined by the equation
B={(z,y)|£>0 and y>0 and 2z’+y <a’}.

One commonly computes an integral over B, such as z292, by the use of the
g sTY

polar coordinate transformation. This is the transformation g : R? — R?

defined by the equation

g(r,0) = (rcos b, rsinf).

One checks readily that det Dg(r,8) = 7, and that the map g carries the open
rectangle

A={(r,6)]0<r<a and 0<6<7/2}

in the (r,8) plane onto B in a one-to-one fashion. Since det Dg =7 > 0 on
A, the map g: A — B is a diffeomorphism. See Figure 17.4.

6 y

W/ZW/%A

a r a x

Figure 17.4
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The change of variables theorem implies that

/:l:2y2 =/(rcos0)2(rsin0)2r;
B A

since the latter exists as an ordinary integral as well as an extended integral,
it can be evaluated (easily) by use of the Fubini theorem.

EXAMPLE 4. Suppose we wish to integrate the same function z%y? over the
open set

W = {(z,y)lz* + y* < a’}.

Here the use of polar coordinates is a bit more tricky. The polar coordinate
transformation g does not in this case define a diffeomorphism of an open set
in the (r, @) plane with W. However, g does define a diffeomorphism of the
open set U = (0,a) x (0,27) with the open set

V={zy|z*+y°<a® and z<0 if y=0}

of R%. See Figure 17.5; the set V consists of W with the non-negative z-axis
deleted. Because the non-negative z-axis has measure zero,

/ $2y2=/$2y2
w v

The latter can be expressed as an integral over U, by use of the polar coordi-
nate transformation.

27

r

Figure 17.5
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EXAMPLE 5. Let B be the open set in R® defined by the equation
B={(z,y,z2) |z>0 and y>0 and z°+y°+2° <d’}.
One commonly evaluates an integral over B, such as fB z2z, by the use of
the spherical coordinate transformation, which is the transformation g :
R® — R® defined by the equation
g(p, $,0) = (psin ¢ cos b, psin dsin b, pcos §).

Now det Dg = p? sin ¢, as you can check. Thus det Dg is positive if 0 < ¢ < 7
and p # 0. The transformation g carries the open set

A={(p,$,0)|0<p<a and 0<$p<7 and 0<6<7/2}

in a one-to-one fashion onto B, as you can check. See Figure 17.6. Since
det Dg > 0 on A, the change of variables theorem implies that

/ 2z = / (psin ¢ cos 8)* (p cos ¢)p° sin ¢.
B A

The latter can be evaluated by the Fubini theorem.

/2 A -

Figure 17.6
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EXERCISES

1. Check the computations made in Examples 3 and 5.

2. If
V={=y2)|2+y*+7* <a® and 2> 0},
use the spherical coordinate transformation to express fv z as an integral
over an appropriate set in (p, @, 8) space. Justify your answer.
3. Let U be the open set in R? consisting of all x with ||x|| < 1. Let
f(z,y) = 1/(2* + ¢°) for (z,y) # 0. Determine whether f is integrable
over U — 0 and over R? — T; if so, evaluate.

4. (a) Show that
”? ]

provided the first of these integrals exists.
(b) Show the first of these integrals exists and evaluate it.
5. Let B be the portion of the first quadrant in R? lying between the hyper-

bolas y = 1 and zy = 2 and the two straight lines y = & and y = 4z.
Evaluate [, z?y*. [Hint: Set £ = u/v and y = uv.]

6. Let S be the tetrahedron in R® having vertices (0,0,0), (1,2,3), (0,1,2),
and (—1,1,1). Evaluate fs f, where f(z,y,2) =z + 2y — z. [Hint: Use
a suitable linear transformation g as a change of variables.]

7. Let 0 < a < b. If one takes the circle in the zz-plane of radius a centered
at the point (b,0,0), and if one rotates it about the z-axis, one obtains
a surface called the torus. If one rotates the corresponding circular disc
instead of the circle, one obtains a 3-dimensional solid called the solid
torus. Find the volume of this solid torus. See Figure 17.7. [Hint: One
can proceed directly, but it is easier to use the cylindrical coordinate
transformation

9(r,6,2) = (rcosb,rsinb, z).

The solid torus is the image under g of the set of all (r,8, 2) for which
(r=b)?+2*<a®and 0< <27

Figure 17.7
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§18. DIFFEOMORPHISMS IN R”

In order to prove the change of variables theorem, we need to obtain some
fundamental properties of diffeomorphisms. This we do in the present section.
Our first basic result is that the image of a compact rectifiable set under a
diffeomorphism is another compact rectifiable set. And the second is that any
diffeomorphism can be broken up locally into a composite of diffeomorphisms
of a special type, called “primitive diffeomorphisms.”

We begin with a preliminary lemma.

Lemma 18.1. Let A be open in R*; let g: A — R" be a function
of class C1. If the subset E of A has measure zero in R*, then the set
g(E) also has measure zero in R™.

Proof. Step 1. Let¢€,6 > 0. We first show that if a set § has measure
zero in R”, then S can be covered by countably many closed cubes, each of
width less than 6, having total volume less than e.

To prove this fact, it suffices to show that if Q) is a rectangle

Q =[a1, 0] x -+ x [a,,bn]

in R?, then @ can be covered by finitely many cubes, each of width less than
6, having total volume less than 2v(Q)). Choose A > 0 so that the rectangle

Qr=1[a; = Abi + A} x - x [@n — A by + A]

has volume less than 20(Q).

Then choose N so that 1/N is less than the smaller of § and A. Consider
all rational numbers of the form m /N, where m is an arbitrary integer. Let
c; be the largest such number for which ¢; < a;, and let d; be the smallest
such number for which d; > b;. Then [a;, b;] C [¢i,di] C [ai — A,b; + A]. See
Figure 18.1. Let @’ be the rectangle

QI = [cl,dll X - X [cmdn]’

which contains Q and is contained in Q. Then ¥(Q') < 2v(Q). Each of
the component intervals [c;,d;] of Q' is partitioned by points of the form
m/N into subintervals of length 1/N. Then Q' is partitioned into subrectan-
gles that are cubes of width 1/N (which is less than §); these subrectangles
cover (). By Theorem 10.4, the total volume of these cubes equals v(Q").
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(Y

Figure 18.1

Step 2. Let C be a closed cube contained in A. Let
|IDg(x)| <M for xeC.

We show that if C' has width w, then g(C) is contained in a closed cube in
R" of width (nM)w.

Let a be the center of C; then C consists of all points x of R* such that
|x — a] < w/2. Now the mean-value theorem implies that given x € C, there
is a point ¢; on the line segment from a to x such that

9;(x) — gj(a) = Dg;(c;) - (x — a).

Then

19;(x) — g;(a)| < n|Dgj(c;)| - |x — a| < nM(w/2).
It follows from this inequality that if x € C, then g(x) lies in the cube
consisting of all y € R” such that

ly — g(a)l < nM(w/2).

This cube has width (nM )w, as desired.

Step 3. Now we prove the theorem. Suppose F is a subset of A and F
has measure zero. We show that g(F) has measure zero.

Let C; be a sequence of compact sets whose union is A, such that C; C
Int Ciy1 for each ¢. Let Ex = Cy N E; it suffices to show that g(E}) has
measure zero. Given € > 0, we shall cover g(E}) by cubes of total volume
less than e.

Since C} is compact, we can choose § > 0 so that the §-neighborhood of
Ck (in the sup metric) lies in Int Cj41, by Theorem 4.6. Choose M so that

|[Dg(z)] < M for x € Ciy.

Using Step 1, cover E} by countably many cubes, each of width less than §,
having total volume less than

€ =¢/(nM)".
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Figure 18.2

Let Dy, D,, ... denote those cubes that actually intersect Ey. Because D;
has width less than &, it is contained in Ci41. Then |Dg(x)| < M for x € D;,
so that g(D;) lies in a cube D} of width nM (width D;), by Step 2. The cube
D; has volume

o(DY) = (nM)"(width D;)* = (n M) v(D;).

Therefore the cubes D}, which cover g(E}y), have total volume less than
(nM)"€ = ¢, as desired. See Figure 18.2. O

EXAMPLE 1. Differentiability is needed for the truth of the preceding
lemma. If g is merely continuous, then the image of a set of measure zero
need not have measure zero. This fact follows from the existence of a contin-
uous map f : [0,1] — [0,1]* whose image set is the entire square [0, 1% It
is called the Peano space-filling curve; and it is studied in topology. (See
[M], for example.)

Theorem 18.2. Let g : A — B be a diffeomorphism of class C",
where A and B are open sets in R*. Let D be a compact subset of A,
and let E = g(D).

(a) We have
g(Int D) =Int £ and ¢(Bd D)=Bd E.
(b) If D is rectifiable, so is E.
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Proof. (a) The map ¢g~! is continuous. Therefore, for any open set U
contained in A, the set g(U) is an open set contained in B. In particular,
g(Int D) is an open set in R” contained in the set g(D) = E. Thus

(1) g(Int D) C Int E.

Similarly, g carries the open set (Ext D)N A onto an open set contained in B.
Because ¢ is one-to-one, the set g((Ext D) N A) is disjoint from g(D) = E.
Thus

(2) g((Ext D)n A) C Ext E.

It follows that

(3) g(Bd D)DBd E.

For let y € Bd E; we show that y € g(Bd D). The set F is compact, since D
is compact and ¢ is continuous. Hence FE is closed, so it must contain its
boundary point y. Then y € B. Let x be the point of A such that g(x) = y.
The point x cannot lie in Int D, by (1), and cannot lie in Ext D, by (2).
Therefore x € Bd D, so that y € g(Bd D), as desired. See Figure 18.3.

y
g
———
g—l
o S
E
A B
Figure 18.3

Symmetry implies that these same results hold for the map g~! : B — A.
In particular,

(1) ¢~'(Int E) c Int D,
(3) ¢~'(Bd E) D> Bd D.
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Combining (1) and (1’) we see that g(Int D) = Int E; combining (3) and (3')
gives the equation g(Bd D) = Bd E.

(b) If D is rectifiable, then Bd D has measure zero. By the preceding
lemma, g(Bd D) also has measure zero. But g(Bd D) = Bd E. Thus F'is
rectifiable. O

Now we show that an arbitrary diffeomorphism of open sets in R™ can
be “factored” locally into diffecomorphisms of a certain special type. This
technical result will be crucial in the proof of the change of variables theorem.

Definition. Let A : A — B be a diffeomorphism of open sets in R"
(where n > 2), given by the equation

h(x) = (hl(x)7 sty hn(x))'

Given i, we say that h preserves the i'" coordinate if hi(x) = z; for
all x € A. If h preserves the i*P coordinate for some %, then h is called a
primitive diffeomorphism.

Theorem 18.3. Let g : A — B be a diffeomorphism of open sets
in R®, where n > 2. Given a € A, there is a neighborhood U, of a
contained in A, and a sequence of diffeomorphisms of open sets in R,

h h h
Up 20Uy 20Uy — - 25 1,

such that the composite hio---ohyohy equals g|Us, and such that each
h; is a primitive diffeomorphism.

Proof. Step 1. We first consider the special case of a linear transfor-
mation. Let T : R* — R” be the linear transformation T'(x) = C - x, where
C is a non-singular n by n matrix. We show that T factors into a sequence
of primitive non-singular linear transformations.

This is easy. The matrix C equals a product of elementary matrices, by
Theorem 2.4. The transformation corresponding to an elementary matrix may
either (1) switch two coordinates, or (2) replace the i*™" coordinate by itself plus
a multiple of another coordinate, or (3) multiply the i*" coordinate by a non-
zero scalar. Transformations of types (2) and (3) are clearly primitive, since
they leave all but the #*! coordinate fixed. We show that a transformation of
type (1) is a composite of transformation of types (2) and (3), and our result
follows. Indeed, it is easy to check that the following sequence of elementary
operations has the effect of exchanging rows 7 and j:
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Row ¢ Row j

Initial state a b
Replace (row ¢) by (row ¢) — (row 7) a-b b
Replace (row j) by (row 7) + (row 2) a-b a
Replace (row ) by (row ¢) — (row 7) -b a
Multiply (row 2) by —1 b a

Step 2. We next consider the case where ¢ is a translation. Let ¢ : R® —
R" be the map #(x) = x + c. Then { is the composite of the translations

hi(x)=x+(0,c¢3, ..., Cn),
ta(x) =x+(c1, 0, ..., 0),
both of which are primitive.
Step 3. We now consider the special case where a = 0 and g(0) = 0
and Dg(0) = I,,. We show that in this case, g factors locally as a composite

of two primitive diffeomorphisms.
Let us write ¢ in components as

9(x) = (g1(x)s -5 9a (%)) = (91(Z1s -5 Tn)s oy Gu(@1s -5 Tn)).
Define h : A — R™ by the equation
h(x) = (91(x), .-+ 5 gn-1(x), Tn).
Now h(0) = 0, because ¢;(0) = 0 for all 7; and

a(gl, ey gn_l)/ax
Dh(x) = .
0 01

Since the matrix 8(g1, ..., gn-1)/0x equals the first n— 1 rows of the matrix
Dg, and Dg(0) = I,,, we have Dh(0) = I,,. It follows from the inverse
function theorem that h is a diffeomorphism of a neighborhood V; of 0 with
an open set Vj in R®. See Figure 18.4. Now we define k : V; — R” by the

equation

k(y) =¥, -5 Yn-1, gn(h—l(y)))'
Then k(0) = 0 (since h~!(0) = 0 and ¢,(0) = 0). Furthermore,

I._, 0 ]
Dk(y) = .
D(gn o h™)(y)
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Figure 18.4

Applying the chain rule, we compute

D(g, o h'l)(O) = Dg,(0) - Dh'l(O)
= Dga(0) - [Dh(0)]"!
=[0.--01-L,=[0---01].
Hence Dk(0) = I,. It follows that k is a diffeomorphism of a neighborhood

Wi of 0 in R” with an open set W, in R™.
Now let Wy = h~1(W). The diffeomorphisms

Wo 2o W, 2o W,

are primitive. Furthermore, the composite koh equals g|Wjs, as we now show.
Given x € Wy, let y = h(x). Now

(%) Y = (91(x), - -5 gn-1(x), Zn)
by definition. Then
E(¥)= (Y15 -+ » Yn=1,92(R7(¥))) by definition,
= (91(x), -5 ga-1(x), gn(x)) by (%),
= g(x).



§18. Diffeomorphisms in R* 159

@g(a)
By

R

Figure 18.5

Step 4. Now we prove the theorem in the general case.
Given g : A — B, and given a € A, let C be the matrix Dg(a). Define
diffeomorphisms t;,2,,T : R® — R™ by the equations
ti(x)=x+a and {(x)=x-g(a) and T(x)=C"'.x.

Let § equal the composite T ot30 ¢ ot;. Then § is a diffeomorphism of the
open set t7'(A) of R with the open set T'(¢3(B)) of R”. See Figure 18.5. It
has the property that

g(0)=0 and Dg(0)=1,;

the first equation follows from the definition, while the second follows from
the chain rule, since DT'(0) = C~! and Dt; = I, for i = 1,2.

By Step 3, there is an open set W, about 0 contained in ¢7'(A) such
that §|W; factors into a sequence of (two) primitive diffeomorphisms. Let

Wy = g(Ws). Let
Ay =t(Wy) and By= t;lT'l(Wg).
Then g carries Ag onto By, and g]Ap equals the composite
Ao 2o Wy L wy I T1(Wh) 2 B,

By Steps 1 and 2, each of the maps tl_l and t;l and T factors into primitive
transformations. The theorem follows. 0O
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EXERCISES

1. (a) If f:R? — R! is of class C", show that f is not one-to-one. [Hint:
If Df(x) = 0 for all x, then f is constant. If Df(xo) # 0, apply the
implicit function theorem.}

(b) If f : R = R? is of class C?, show that f does not carry R' onto R®.
In fact, show that f(R!) contains no open set of RZ.

*2. Prove a generalization of Theorem 18.3 in which the statement “h is
primitive” is interpreted to mean that h preserves all but one coordinate.
[Hint: First show that if a=0 and g(0) = 0 and Dg(0) = I, then g can
be factored locally as k o h, where

h(x) = (g1(x), .-+, gi-1(x), 26, gis1 (), - -, gn(X))

and k preserves all but the i*? coordinate; and furthermore, h{0) =
k(0) = 0 and Dh(0) = Dk(0) = I,. Then proceed inductively.]

3. Let A beopenin R™;let g: A — R". If S is a subset of A, we say that g
satisfies the Lipschitz condition on § if the function

Ax,y) =g(x) - gyl /Ix -yl

is bounded for x,y in .S and x # y. We say that g is locally Lipschitz

if each point of A has a neighborhood on which g satisfies the Lipschitz

condition.

(a) Show that if g is of class C?, then g is locally Lipschitz.

(b) Show that if g is locally Lipschitz, then g is continuous.

(c) Give examples to show that the converses of (a) and (b) do not hold.

(d) Let g be locally Lipschitz. Show that if C'is a compact subset of A,
then g satisfies the Lipschitz condition on C.[Hint: Show there is a
neighborhood V of the diagonal A in C x C such that A is bounded
on V-A]

4. Let A be open in R™; let g : A — R™ be locally Lipschitz. Show that if
the subset E of A has measure zero in R, then g(E) has measure zero

in R™.
5. Let Aand B beopenin R";let g: A — B be a one-to-one map carrying A
onto B.
(a) Show that (a) of Theorem 18.2 holds under assumption that g and
g~ ! are continuous.

(b) Show that (b) of Theorem 18.2 holds under the assumption that g is
locally Lipschitz and g~! is continuous.
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§19. PROOF OF THE CHANGE OF VARIABLES THEOREM

Now we prove the general change of variables theorem. We prove first the
“only if” part of the theorem. It is stated in the following lemma:

Lemma 19.1. Let g : A — B be a diffeomorphism of open sets in
R”. Then for every continuous function f : B — R that is integrable
over B, the function (f o g)|det Dg| is integrable over A, and

/Bf=/A(fog)ldethl-

Proof. The proof proceeds in several steps, by which one reduces the
proof to successively simpler cases.

Step 1. Let ¢ :U — V and h : V — W be diffeomorphisms of open
sets in R®. We show that if the lemma holds for ¢ and for &, then it holds for
hog.

Suppose f : W — R is a continuous function that is integrable over W.
It follows from our hypothesis that

/ f=/(foh)ldechI:/(fohog)|(dech)og[ldethl;
w v U

the second integral exists and equals the first integral because the lemma holds
for h; and the third integral exists and equals the second integral because the
lemma holds for g. In order to show that the lemma holds for ho g, it suffices

to show that
|(det Dh) o g||det Dg| = |det D(h o g)|.

This result follows from the chain rule. We have
D(h o g)(x) = Dh(g(x)) - Dg(x),

whence

det D(h o g) = [(det Dh) o g] - [det Dg],

as desired.

Step 2. Suppose that for each x € A, there is a neighborhood U of x
contained in A such that the lemma holds for the diffeomorphism g : U — V
(where V = g(U)) and all continuous functions f : V — R whose supports
are compact subsets of V. Then we show that the lemma holds for g.

Roughly speaking, this statement says that if the lemma holds locally for
g and functions f having compact support, then it holds for g and all f.
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This is the place in the proof where we use partitions of unity. Write A
as the union of a collection of open sets U, such that if V, = g(Uy), then
the lemma holds for the diffeomorphism ¢ : Uy — V, and all continuous
functions f : V, — R whose supports are compact subsets of V4. The union
of the open sets V, equals B. Choose a partition of unity {¢;} on B, having
compact supports, that is dominated by the collection {Va}. We show that
the collection {¢; o g} is a partition of unity on A, having compact supports.
See Figure 19.1.

Figure 19.1

First, we note that ¢;(g(x)) > 0 for x € A. Second, we show ¢; o g has
compact support. Let T; = Support ¢;. The set g~1(T}) is compact because
T; is compact and g~! is continuous; furthermore, ¢; o g vanishes outside
g~ Y(T}). The closed set S; = Support (¢; o g) is contained in g=*(T}), so
that ; is compact. Third, we check the local finiteness condition. Let x be
a point of A. The point y = g(x) has a neighborhood W that intersects T;
for only finitely many values of z. Then the set g~!(W) is an open set about
x that intersects S; for at most these same values of ¢. Fourth, we note that

Y dil9(x) = D ¢iy) = 1.

Thus {¢; o g} is a partition of unity on A.
Now we complete the proof of Step 2. Suppose f : B — R is continuous
and f is integrable over B. We have

/Bf=g;[/3¢.~f1,
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by Theorem 16.5. Given ¢, choose « so that T; C V,. The function ¢;f is
continuous on B and vanishes outside the compact set T;. Then

/B¢if=/Ti¢if=/Va¢if,

by Lemma 16.4. Our lemma holds by hypothesis for ¢ : U, — V4 and the
function ¢; f. Therefore

/ &if = / (¢109) (f 0.g)| det Dyg|.
Vo Uas

Since the integrand on the right vanishes outside the compact set S;, we can
apply Lemma 16.4 again to conclude that

/ &f = / (5 0.9) (f 0 g)| det Dg|.
B A

We then sum over ¢ to obtain the equation
*) L 1= 1] @o0(foglde Dol
i=1

Since | f| is integrable over B, equation (*) holds if f is replaced throughout
by |f]. Since {¢; o g} is a partition of unity on A, it then follows from
Theorem 16.5 that (f o g)|det Dg| is integrable over A. We then apply (*)
to the function f to conclude that

/Bf=/A(fog)|deth|-

Step 3. We show that the lemma holds for n = 1.

Let g : A — B be a diffeomorphism of open sets in R'. Given z € A, let 1
be a closed interval in A whose interior contains z; and let J = g(I). Now J is
an interval in R! and ¢ maps Int [ onto Int J. (See Theorems 17.1 and 18.2.)
Since x is arbitrary, it suffices by Step 2 to prove the lemma holds for the
diffeomorphism ¢ : Int I — Int J and any continuous function f :Int J — R
whose support is a compact subset of Int J. That is, we wish to verify the
equation

(++) [ 1= oo

This is easy. First, we extend f to a continuous function defined on J by
letting it vanish on Bd J. Then (*#) is equivalent to the equation

[1=[oaa,
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in ordinary integrals. But this equation follows from Theorem 17.1.

Step 4. Let n > 1. In order to prove the lemma for an arbitrary diffeo-
morphism ¢ : A — B of open sets in R®, we show that it suffices to prove it
for a primitive diffeomorphism h : U — V of open sets in R™.

Suppose the lemma holds for all primitive diffecomorphisms in R?. Let
g : A — B be an arbitrary diffeomorphism in R®. Given x € A, there exists
a neighborhood Uy of x and a sequence of primitive diffeomorphisms

h h h
Up 2o Uy 2o 2oy,

whose composite equals g|U;. Since the lemma holds for each of the diffeo-
morphisms h;, it follows from Step 1 that it holds for g|U;. Then because x
is arbitrary, it follows from Step 2 that it holds for g.

Step 5. We show that if the lemma holds in dimension n — 1, it holds
in dimension n.

This step completes the proof of the lemma.

In view of Step 4, it suffices to prove the lemma for a primitive diffeomor-
phism h : U — V of open sets in R”. For convenience in notation, we assume
that h preserves the last coordinate.

Let p € U; let q = h(p). Choose a rectangle @@ contained in V' whose
interior contains q; let S = h=1(Q). By Theorem 18.2, the map h defines a
diffeomorphism of Int S with Int (). Since p is arbitrary, it suffices by Step 2
to prove that the lemma holds for the diffeomorphism h : Int S — Int QQ and
any continuous function f :Int () — R whose support is a compact subset of
Int Q). See Figure 19.2.

7
o

Figure 19.2

-

Support f
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Now (f o h)| det Dh| vanishes outside a compact subset of Int S; hence
it is integrable over Int .S by Lemma 16.4. We need to show that

/ f= (f o h)| det Dh.
Int Q Int §

This is an equation involving extended integrals. Since these integrals ex-
ist as ordinary integrals, it is by Theorem 15.4 equivalent to the corresponding
equation in ordinary integrals.

Let us extend f to R® by letting it vanish outside Int (), and let us define
a function F' : R® — R by letting it equal (f oh)|det Dh| on Int S and vanish
elsewhere. Then both f and F' are continuous, and our desired equation is

equivalent to the equation
/f:/R
Q s

The rectangle @ has the form @ = D x I, where D is a rectangle in
R™~! and [ is a closed interval in R. Since S is compact, its projection on the
subspace R"~! x 0 is compact and thus contained in a set of the form £ x 0,
where E is a rectangle in R®~!1. Because h preserves the last coordinate, the
set S is contained in the rectangle E x I. See Figure 19.3.

[
)
Jd

Figure 19.3

Because F' vanishes outside S, our desired equation can be written in the

form
[r=] R
Q ExI
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which by the Fubini theorem is equivalent to the equation

= Fx, .
~/t€1 y€D f(y,t) ~/t€1 x€E ( t)

It suffices to show the inner integrals are equal. This we now do.

The intersections of U and V with R*~! x ¢ are sets of the form U, x ¢
and V; x t, respectively, where U, and V; are open sets in R®~1. Similarly,
the intersection of S with R*~1 x t has the form .9, x t, where 9, is a compact
set in R*~1. Since F vanishes outside S, equality of the “inner integrals” is
equivalent to the equation

[ o= / , P,

and this is in turn equivalent by Lemma 16.4 to the equation
fy,t) = F(x,1).
YEV, xeU,

This is an equation in (n — 1)-dimensional integrals, to which the induction

hypothesis applies.
The diffeomorphism b : U — V has the form

h(x,t) = (k(xs t)vt)
for some C! function k : U — R"~!. The derivative of h has the form

Ok/0x ak/(’)t]

Dh = [0”.0 /

so that det Dh = det k/0x. For fixed ¢, the map x — k(x,t) is a C! map
carrying U; onto V; in a one-to-one fashion. Because det 0k/0x = det Dh #
0, this map is in fact a diffeomorphism of open sets in R*~1,

We apply the induction hypothesis; we have, for fixed , the equation

flyt) = / _,, FCe 1), 0] det 9%/ 0,

YEV,

For x € U, the integrand on the right equals
f(h(x,t))|det Dh| = F(x,1).

The lemma follows. 0O

We now prove the “if” part of the change of variables theorem.
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Lemma 19.2. Let g: A — B be a diffeomorphism of open sets in
R"; let f: B — R be continuous. If (f og)|det Dg| is integrable over A,
then f is integrable over B.

Proof. We apply the lemma just proved to the diffeomorphism g~! :
B — A. The function F = (f o g)|det Dg| is continuous on A, and is
integrable over A by hypothesis. It follows from Lemma 19.1 that the function

(Fog™')|det Dg™!|
is integrable over B. But this function equals f. For if g(x) =y, then
(D(g™H)(¥) = [Dg(x)]™!
by Theorem 7.4, so that

(Fog™)(y)(det D(g~"))(¥)| = F(x) - |1 /det Dg(x)| = f(y). O

EXAMPLE 1. Ifit happens that both integrals in the change of variables the-
orem exist as ordinary integrals, then the theorem implies that these two ordi-
nary integrals are equal. However, it is possible for only one of these integrals,
or neither, to exist as an ordinary integral. Consider, for instance, Exam-
ple 2 of §17. The change of variables theorem, applied to the diffeomorphism
g:(-7/2,m/2) — (=1,1) given by g(x) = cos z, implies that

| wva-vye= | 1
("11]) (_"/2'"/2)

Here the integral on the right exists as an ordinary integral, but the integral
on the left does not.

EXERCISES

1. Let A be the region in R? bounded by the curve z2 — Ty + 27 = 1.
Express the integral f Ty as an integral over the unit ball in R? centered
at 0. [Hint: Complete the square.]

2. (a) Express the volume of the solid in R® bounded below by the surface
z = £? 4 2y?, and above by the plane z = 2z + 6y + 1, as the integral of
a suitable function over the unit ball in R? centered at 0.

(b) Find this volume.

3. Let mx : R® — R be the k** projection function, defined by the equa-
tion Tk(x) = 4. Let S be a rectifiable set in R™ with non-zero volume.
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The centroid of S is defined to be the point ¢(S) of R* whose k*" coor-
dinate, for each k, is given by the equation

ex(8) = [1/0(S)] / .

We say that S is symmetric with respect to the subspace zx = 0 of R"
if the transformation

h(x) = (21, -vy Tho1y =Ty Thely ovvy Tn)

carries S onto itself. In this case, show that cx(S) = 0.

4. Find the centroid of the upper half-ball of radius a in R®. (See Exercise 2
of §17.)

5. Let A be an open rectifiable set in R"~. Given the point p in R™ with
Pn > 0, let S be the subset of R™ defined by the equation

S={x|x=(1-t)a+tp, where a€ Ax0 and 0<t<1}.

Then S is the union of all open line segments in R” joining p to points
of A x 0; its closure is called the cone with base A x 0 and vertex p.
Figure 19.4 illustrates the case n = 3.

(a) Define a diffeomorphism g of A x (0,1) with S.

(b) Find v(S) in terms of v(A).

*(c) Show that the centroid c(S) of S lies on the line segment joining
c(A) and p; express it in terms of c(A) and p.

Figure 19.4

*6. Let B™(a) denote the closed ball of radius a in R”, centered at 0.

(a) Show that
U(B"(a)) = Ana”

for some constant An. Then A, = v(B™(1)).
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(b) Compute Ay and Az.
(c) Compute A, in terms of A, _,.

(d) Obtain a formula for A,. [Hint: Consider two cases, according as n
is even or odd.]

*7. (a) Find the centroid of the upper half-ball
Bi(a)={x|x€ B"(a) and =z, >0}

in terms of Ap and An_; and a, where A, = U(B"(l)).
(b) Express ¢(B}(a)) in terms of c(B37%(a)).

169
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The meaning of the determinant

We now give a geometric interpretation of the determinant function.

Theorem 20.1. Let A be an n by n matriz. Let h : R® — R™ be
the linear transformation h(x) = A-x. Let S be a rectifiable set in R",
and let T = h(S). Then

v(T) = |det A|- v(S5).

Proof. Consider first the case where A is non-singular. Then £ is a dif-
feomorphism of R™ with itself; h carries Int S onto Int T"; and T is rectifiable.

We have
oT) = o(Int T) = / 1= / | det Dh|
Int T Int §

by the change of variables theorem. Hence
v(T):/ |det A| = |det A]- v(S).
Int S

Consider now the case where A is singular; then det A = 0. We show
that »(T') = 0. Since S is bounded, so is T'. The transformation h carries R"
onto a linear subspace V' of R" of dimension p less than n, which has measure
zero in R", as you can check. Then T is closed and bounded and has measure
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zero in R™. The function 17 is continuous and vanishes outside T; hence the
integral [}, 1 exists and equals 0. [

This theorem gives one interpretation of the number |det A |; it is the
factor by which the linear transformation h(x) = A - x multiplies volumes.
Here is another interpretation.

Definition. Let a;, ..., a; be independent vectors in R". We define
the k-dimensional parallelopiped P = P(a,, ..., a;) to be the set of all x
in R™ such that
X=cCa; + -+ Crag

for scalars ¢; with 0 < ¢; < 1. The vectors ay, ..., a; are called the edges
of P.

A few sketches will convince you that a 2-dimensional parallelopiped is
what we usually call a “parallelogram,” and a 3-dimensional one is what we
usually call a “parallelopiped.” See Figure 20.1, which pictures parallelograms
in R? and R3 and a 3-dimensional parallelopiped in R3.

—_—" ’,/’/
/’/ / - //
I
/ | e
/ |/
|
|
/ i |
)
Figure 20.1

We eventually wish to define what we mean by the “k-dimensional vol-
ume” of a k-parallelopiped in R". In the case k = n, we already have a notion
of volume, as defined in §14. It satisfies the following formula:

Theorem 20.2. Let a;, ..., a, be n independent vectors in R".
Let A =[a; ... a,] be the n by n matriz with columns a,, ..., a,. Then

v(P(a1, ..., an)) = |det A|.
Proof. Consider the linear transformation h : R® — R" given by

h(x) = A -x. Then h carries the unit basis vectors eq, ..., €, to the vec-
tors aj, ..., an, since A -e; = aj by direct computation. Furthermore, h
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carries the unit cube J™ = [0,1]" onto the parallelopiped P(ay, ..., a,). By
the preceding theorem,

v(P(a1, ..., a,)) =|det A|-v(["*) =|det A|. O

EXAMPLE 1. In calculus, one studies the 3-dimensional version of this for-
mula. One learns that the volume of the parallelopiped with edges a, b, c is
given (up to sign) by the “triple scalar product”

a-(bxc)=det[abc]

(We write a, b, and c as column matrices here, as usual.) One learns also that
the sign of the triple scalar product depends on whether the triple a, b, ¢
is “right-handed” or “left-handed.” We now generalize this second notion to
R", and indeed, to an arbitrary finite-dimensional vector space V.

Definition. Let V be an n-dimensional vector space. An n-tuple
(a1, ..., a,) of independent vectors in V is called an n-frame in V. In
R", we call such a frame right-handed if

det [ay --- a,] > 0;

we call it left-handed otherwise. The collection of all right-handed frames in
R"” is called an orientation of R"?; and so is the collection of all left-handed
frames. More generally, choose a linear isomorphism 7" : R®™ — V', and define
one orientation of V' to consist of all frames of the form (T'(a,), ..., T(a,))
for which (ay, ..., a,) is aright-handed frame in R", and the other orientation
of V' to consist of all such frames for which (ay, ..., a,) is left-handed. Thus
V has two orientations; each is called the reverse, or the opposite, of the
other.

It is easy to see that this notion is well-defined (independent of the choice
of T'). Note that in an arbitrary n-dimensional vector space, there is no well-
defined notion of “right-handed,” although there is a well-defined notion of
orientation.

171
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EXAMPLE 2. In R!, a frame consists of a single non-zero number; it is right-
handed if it is positive, and left-handed if it is negative. In R?, a frame (a1, a2)
is right-handed if one must rotate a; in a counterclockwise direction through
an angle less than 7 to make it point in the same direction as a,. (See the
exercises.) In R%, a frame (a1, a2,a3) is right-handed if curling the fingers of
one’s right hand in the direction from a; to a2 makes one’s thumb point in
the direction of az. See Figure 20.2.

az as

a /-—-

a2

a

Figure 20.2

One way to justify this statement is to note that if one has a frame
(al (t), az(t), a3(t)) that varies continuously as a function of ¢ for 0 < ¢ <1,
and if the frame is right-handed when ¢ = 0, then it remains right-handed for
all t. For the function det [a; a; a3] cannot change sign, by the intermediate-
value theorem. Then since the frame (e;, ez, e3) satisfies the “curled right-
hand rule® as well as the condition det {e; ez es] > 0, so does the frame
corresponding to any other position of the “curled right hand” in 3-dimensional

space.
We now obtain another interpretation of the sign of the determinant.

Theorem 20.3. Let C be a non-singular n by n matriz. Let
h:R® — R" be the linear transformation h(x) = C -x. Let (aj, ..., an)
be a frame in R*. If detC > 0, the the frames

(a,...,a,) and (h(a), ..., h(an))

belong to the same orientation of R"; if det C < 0, they belong to op-
posite orientations of R™.

If det C > 0, we say h is orientation-preserving; if det C < 0, we
say h is orientation-reversing.

Proof. Let b; = h(a;) for each t. Then
C.[a1 --- 2] = [by - bn),
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so that
(det C) - det [a; -+ a,] = det [by --- by].

If det C' > 0, then det [a; --- a,] and det [b; - -- b,] have the same sign; if
det C < 0, they have opposite signs. [

Invariance of volume under isometries

Definition. The vectors ay, ..., a; of R" are said to form an orthog-
onal set if (a;,a;) = 0 for ¢ # j. They form an orthonormal set if
they satisfy the additional condition (a;, a;) = 1 for all i. If the vectors
aj, ..., a; form an orthogonal set and are non-zero, then the vectors a; /||ay||,
...y ag/||ak|| form an orthonormal set.

An orthogonal set of non-zero vectors ay, ..., a; is always independent.
For, given the equation

dia, +---+drar =0,

one takes the dot product of both sides with a; to obtain the equation
di{a;,a;) = 0, which implies (since a; # 0) that d; = 0.

An orthogonal set of non-zero vectors in R® that consists of n vectors is
thus a basis for R®. The set ey, ..., e, is one such basis for R®, but there are
many others.

Definition. An n by n matrix A is called an orthogonal matrix if
the columns of A form an orthonormal set. This condition is equivalent to
the matrix equation

AT A =1,

as you can check.

If A is orthogonal, then A is square and A% is a left inverse for A; it
follows that A" is also a right inverse for A. Thus A is an orthogonal matrix
if and only if A is non-singular and A" = A~

Note that if A is orthogonal, then det A = 1. For

(det A)? = (det A™)(det A) = det(A* - A) = det I, = 1.

The set of orthogonal matrices forms what is called, in modern algebra,
a group. That is the substance of the following theorem:
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Theorem 20.4. Let A, B, C be orthogonal n by n matrices. Then:

(a) A- B is orthogonal.

(b) A-(B-C)=(A-B)-C.

(c) There is an orthogonal matriz I, such that A-I, = I, A=A
for all orthogonal A.

1(d) Given A, there is an orthogonal matriz A~ such that A- A~ =
AV A=1,.

Proof. To check (a), we compute
(A-B)-(A-B)=(B" A")-(A-B)
= B".B=1,.

Condition (b) is immediate and (c) follows from the fact that I, is orthogonal.
To check (d), we note that since A'" equals A~

In = A. A" = (Atr)tr LAY = (A—l)tr . A_l.

Thus A~! is orthogonal, as desired. [

Definition. The linear transformation h : R® — R" given by
h(x)=A-x

is called an orthogonal transformation if A is an orthogonal matrix. This
condition is equivalent to the requirement that h carry the basis e), ..., en
¢or R" to an orthonormal basis for R".

Definition. Let A : R® — R”. We say that h is a (euclidean) isometry
IA(x) = Rl = lix - vl

for all x,y € R*. Thus an isometry is a map that preserves euclidean dis-
tances.

if

Theorem 20.5. Let h:R* — R" be a map such that h(0) = 0.
(a) The map h is an isometry if and only if it preserves dot products.

(b) The map h is an isometry if and only if it is an orthogonal
transformation.

Proof. (a) Given x and y, we compute:
1) {IAx) — WP = (h(x), h(x)) = 2(h(x), A(y)) + (h(¥), h(¥))

(2) ”x - y“2 = (X,x) - 2(x$ y) + (y, Y)'
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If h preserves dot products, then the right sides of (1) and (2) are equal,
thus h preserves euclidean distances as well. Conversely, suppose h preserves
euclidean distances. Then in particular, for all x,

lh(x) = R(0)] = lIx - of,

so that ||A(x)|| = ||x]|. Then the first and last terms on the right side of (1)
are equal to the corresponding terms on the right side of (2). Furthermore,
the left sides of (1) and (2) are equal by hypothesis. It follows that

(h(x), h(y)) = (x,¥),

as desired.

(b) Let h(x) = A - x, where A is orthogonal; we show h is an isometry.
By (a), it suffices to show h preserves dot products. Now the dot product of
h(x) and h(y) can be expressed as the matrix product

h(x)"" - h(y)
if h(x) and h(y) are written as column matrices (as usual). We compute
h(x)" - h(y) = (A %) - (A -y)

=xtr_Atr_A_y=xtr_y.
Thus h preserves dot products, so it is an isometry.
Conversely, let h be an isometry with h(0) = 0. Let a; be the vector
a; = h(e;) for all 7; let A be the matrix A = [a; --- a,,]. Since h preserves
dot products by (a), the vectors a,, ..., a, are orthonormal; thus A is an

orthogonal matrix. We show that hA(x) = A - x for all x; then the proof is

complete.
Since the vectors a; form a basis for R, for each x the vector h(x) can
be written uniquely in the form

h(x) = Za,-(x)ai,
i=1

for certain real-valued functions ¢;(x) of x. Because the a; are orthonormal,
(h(x),a;) = a;(x)
for each j. Because h preserves dot products,

(h(x)7aj) = (h(x)a h(ej)) = (xsej) =2Zj
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for all j. Thus aj(x) = zj, so that

n I
h(x)zzxiai:[al"‘an]'[ } =A-x. O

Tn

Theorem 20.6. Let h : R® — R". Then h is an isometry if and
only if it equals an orthogonal transformation followed by a translation,
that is, if and only if h has the form

h(x)=A -x+p,
where A is an orthogonal matriz.
Proof. Given h, let p = h(0), and define k(x) = h(x) — p. Then

l1k(x) = k(¥)Il = Ilh(x) = A,

by direct computation. Thus k is an isometry if and only if h is an isometry.
Since k(0) = 0, the map k is an isometry if and only if k(x) = 4 - x,
where A is orthogonal. This in turn occurs if and only if A(x) = A-x+p. O

Theorem 20.7. Let h:R® — R" be an isometry. If S is a rectifi-
able set in R", then the set T = h(S) is rectifiable, and v(T) = v(5).

Proof. The map h is of the form h(x) = A-x + p, where Ais
orthogonal. Then Dh(x) = A, and it follows from the change of variables
theorem that

o(T) = | det A| - v(S) = »(S). O
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EXERCISES

. Show that if h is an orthogonal transformation, then h carries every

orthonormal set to an orthonormal set.

. Find a linear transformation h : R® — R™ that preserves volumes but is

not an isometry.

. Let V be an arbitrary n-dimensional vector space. Show that the two

orientations of V are well-defined.

. Consider the vectors a; in R? such that

1 011
[81 az as 34] = 1 06 1 1
1 1 2 0

Let V be the subspace of R® spanned by a; and a,. Show that as and ay
also span V, and that the frames (a;, a;) and (a3, a,) belong to opposite
orientations of V.

. Given § and ¢, let

a; = (cosf,sinf) and ap = (cos(0 + ¢),sin(6 + ¢))

Show that (a1, a:) is right-handed if 0 < ¢ < =, and left-handed if
—7 < ¢ < 0. What happens if ¢ equals 0 or 7?7

177






Manifolds

We have studied the notion of volume for bounded subsets of euclidean space;
if A is a bounded rectifiable set in R¥, its volume is defined by the equation

v(A):/Al.

When k = 1, it is common to call v(A) the length of A; when k = 2, it is
common to call v(A) the area of A.

Now in calculus one studies the notion of length not only for subsets of
R!, but also for smooth curves in R? and R3. And one studies the notion of
area not only for subsets of R%, but also for smooth surfaces in R3. In this
chapter, we introduce the k-dimensional analogues of curves and surfaces;
they are called k-manifolds in R®. And we define a notion of k-dimensional
volume for such objects. We also define what we mean by the integral of
a scalar function over a k-manifold with respect to k-volume, generalizing
notions defined in calculus for curves and surfaces.
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§21. THE VOLUME OF A PARALLELOPIPED

We begin by studying parallelopipeds. Let P be a k-dimensional parallelop-
iped in R®, with k < n. We wish to define a notion of k-dimensional vol-
ume for P. (Its n-dimensional volume is of course zero, since it lies in a
k-dimensional subspace of R®, which has measure zero in R”.) How shall we
proceed? There are two conditions that it is reasonable that such a volume
function should satisfy. We know that an orthogonal transformation of R®
preserves n-dimensional volume; it is reasonable to require that it preserve k-
dimensional volume as well. Second, if the parallelopiped happens to lie in the
subspace R* x 0 of R, then it is reasonable to require that its k-dimensional
volume agree with the usual notion of volume for a k-dimensional parallelop-
iped in R*. These two “reasonable” conditions determine k-dimensional vol-
ume completely, as we shall see.

We begin with a result from linear algebra which may already be familiar
to you.

Lemma 21.1. Let W be a linear subspace of R™ of dimension k.
Then there is an orthonormal basis for R® whose first k elements form
a basis for W.

Proof. By Theorem 1.2, there is a basis aj, ..., a, for R whose first k
elements form a basis for W. There is a standard procedure for forming from
these vectors an orthogonal set of vectors by, ..., by, such that for each i, the
vectors by, ..., b; span the same space as the vectors ay, ..., a;. It is called
the Gram-Schmidt process; we recall it here.

Given ay, ..., a,, we set

b; = ay,

ba = a; — Auiby,
and for general %,
b; = a; — Aitby — Aisby — - = Ay ioabiy,

where the A;; are scalars yet to be specified. No matter what these scalars are,
however, we note that for each j the vector a; equals a linear combination of
the vectors by, ..., b;. Furthermore, for each j the vector b; can be written
as a linear combination of the vectors aj, ..., aj. (The proof proceeds by
induction.) These two facts imply that, for each 2, a;, ..., a; and by, ..., b;
span the same subspace of R”. It also follows that the vectors by, ..., b, are
independent, for there are n of them, and they span R" as we have just noted.
In particular, none of the b; can equal 0.
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Now we note that the scalars A;; may in fact be chosen so that the vec-
tors b; are mutually orthogonal. One proceeds by induction. If the vectors
by, ..., bij_; are mutually orthogonal, one simply takes the dot product of
both sides of the equation for b; with each of the vectorsb; forj =1, ..., i—1
to obtain the equation

(bi,bj) = (ai,b;) — Aij(bj,b;).

Since b; # 0, there is a (unique) value of );; that makes the right side of
this equation vanish. With this choice of the scalars A;;, the vector b; is
orthogonal to each of the vectors by, ..., b;_;.

Once we have the non-zero orthogonal vectors b;, we merely divide each
by its norm ||b;|| to find the desired orthonormal basis for R*. O

Theorem 21.2.  Let W be a k-dimensional linear subspace of R™.
There is an orthogonal transformation h : R® — R" that carries W onto
the subspace R* x 0 of R".

Proof. Choose an orthonormal basis by, ..., b, for R® such that the
first k basis elements by, ..., by form a basis for W. Let g : R®* — R" be
the linear transformation g(x) = B - x, where B is the matrix with successive
columns by, ..., by. Then g is an orthogonal transformation, and g(e;) = b;
for all 7. In particular, g carries R* x 0, which has basis ey, ..., e, onto W.
The inverse of g is the transformation we seek. [

Now we obtain our notion of k-dimensional volume.
Theorem 21.3. There is a unique function V that assigns, to

each k-tuple (xi,...,xx) of elements of R", a non-negative number
such that:

(1) If h : R® —R" is an orthogonal transformation, then

V(h(xl), ey h(xk)) = V(xl, ceey Xk).

(2) Ify1, ..., yr belong to the subspace R* x 0 of R*, so that
yi=
0

V(yl7-'-7yk) = Idet’ [Zl Zk]l.

for z; € R¥, then
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The function V wvanishes if and only if the vectors xi, ..., x; are de-
pendent. It satisfies the equation

V(x1, ... xi) = [det(X* - X)]'/2,
where X is the n by k matriz X =[x; --- xz].

We often denote V (xy, ..., xi) simply by V(X).

Proof. Given X = [x; --- xi], define
F(X) = det(X* - X).
Step 1. If h : R® — R"™ is an orthogonal transformation, given by the
equation h(x) = A - x, where A is an orthogonal matrix, then

F(A-X) = det((A - X)" - (A- X))

= det(X* - X) = F(X).
Furthermore, if Z is a k by k matrix, and if Y is the n by k matrix

&)

then
VA
F(Y) = det([Z2* 0] - 0 )
= det(Z% - Z) = det® Z.

Step 2. Tt follows that F' is non-negative. For given xy, ..., x; in R?,
let W be a k-dimensional subspace of R" containing them. (If the x; are
independent, W is unique.) Let A(x) = A -x be an orthogonal transformation
of R" carrying W onto the subspace R¥ x 0. Then A - X has the form

oxe[]

so that F(X) = F(A-X) = det? Z > 0. Note that F(X) = 0 if and only
if the columns of Z are dependent, and this occurs if and only if the vectors
X1, ..., Xg are dependent.

Step 3. Now we define V(X) = (F(X))l/z. It follows from the com-
putations of Step 1 that V satisfies conditions (1) and (2). And it follows
from the computation of Step 2 that V' is uniquely characterized by these two
conditions. 0O

Definition. If x;, ..., x; are independent vectors in R", we define the
k-dimensional volume of the parallelopiped P = P(x1, ..., Xi) to be the
number V(x,, ..., xx), which is positive.
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EXAMPLE 1. Consider two independent vectors a and b in R% let X be
the matrix X = [a b]. Then V(X) is the area of the parallelogram with
edges a and b. Let 8 be the angle between a and b, defined by the equation
(a,b) = ||a]| ||b]| cos§. Then

(V(X))? = det(X"" - X)

_ et[uan? (a,b)
(b,2) [

= [lal?Ibf|*(1 — cos® 8) = ||al®||b}i? sin® 4.

Figure 21.1 shows why this number is interpreted in calculus as the square of
the area of the parallelogram with edges a and b.

Figure 21.1

In calculus one studies another formula for the area of the parallelogram
with edges a and b. If a X b is the cross product of a and b, defined by the
equation

a; b a; b a; b
a x b=det ]el—det ]e2+det[ ]ea,
az b; az bs a b,

then one learns in calculus that the number ||a x b|f equals the area of P(a, b).
This is justified by verifying directly that

2 2
lla]* Ibl]” - (a, b)* = ||la x bJ|*.
Often this verification is left as an “exercise for the reader.” Some exercise!

Just as there are for a parallelogram in R3, there are for a k-parallelopiped
in R” two different formulas for its k-dimensional volume. The first is the
formula given in the preceding theorem. It is very convenient for theoretical
purposes, but sometimes not very pleasant for computational purposes. The
second, which is a generalization of the cross-product formula just discussed,
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is often more convenient to use in practice. We derive it now; it will be used
in some of the examples and exercises.

Definition. Let xy, ..., X} be vectors in R® with k < n. Let X be the
matrix X =[xy --- xg). If I = (41, ..., i) is a k-tuple of integers such that
1 <4 < 4y < -+ < 1 < n, we call I an ascending k-tuple from the set
{1, ..., n}, and we denote by

X; orby X(t1,..., %)
the k by k submatrix of X consisting of rows 1, ..., & of X.

More generally, if I is any k-tuple of integers from the set {1, ..., n},
not necessarily distinct nor arranged in any particular order, we use thls same
notation to denote the k by k& matrix whose successive rows are rows ¢y, ..., ik
of X. It need not be a submatrix of X in this case, of course.

*Theorem 21.4. Let X be an n by k matriz with k < n. Then
V(X)=[D_det’ X,]'/%,
(1]

where the symbol [I] indicates that the summation ertends over all as-
cending k-tuples from the set {1, ..., n}.

This theorem may be thought of as a Pythagorean theorem for k-volume.
It states that the square of the volume of a k-parallelopiped P in R" is equal
to the sum of the squares of the volumes of the k-parallelopipeds obtained by
projecting P onto the various coordinate k-planes of R™.

Proof. Let X have size n by k. Let

F(X)=det(X*" - X) and G(X)=) det’ X.
1]

Proving the theorem is equivalent to showing that F'(X) = G(X) for all X.

Step 1. The theorem holds when k = lork=n. If k=1, then X is a
column matrix with entries A1, ..., An, say. Then

F(X) =) (XN)’=G(X).
If k = n, the summation in the definition of G' has only one term, and

F(X) =det’ X = G(X).
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Step 2. If X = [x; --- xi] and the x; are orthogonal, then
F(X) = llxalPllxal® - - x|,
The general entry of X* - X is x{* - x;, which is the dot product of x; and
x;. Thus if the x; are orthogonal, X** - X is a diagonal matrix with diagonal
entries [|x;]|%.

Step 3. Consider the following two elementary column operations, where
j# L

(1) Exchange columns j and £.

(2) Replace column j by itself plus ¢ times column £.

We show that applying either of these operations to X does not change the
values of F or G.

Given an elementary row operation, with corresponding elementary ma-
trix F, then F - X equals the matrix obtained by applying this elementary
row operation to X. One can compute the effect of applying the correspond-
ing elementary column operation to X by transposing X, premultiplying
by F, and then transposing back. Thus the matrix obtained by applying an
elementary column operation to X is the matrix

(E . Xtr)tr - X . Etr'
It follows that these two operations do not change the value of F'. For

F(X-E") =det(E- X" - X - E™)
= (det E) (d(‘l‘t,(_X'tr . X)) (det Etr)
= F(X),

since det E = X1 for these two elementary operations.

Nor do these operations change the value of G. Note that if one applies
one of these elementary column operations to X and then deletes all rows
but Z, ..., i, the result is the same as if one had first deleted all rows but
1, ..., & and then applied the elementary column operation. This means
that

(X -E*) = X;-E*™.

We then compute
G(X -E™) =) det’ (X - E);

(1]

=Y det’ (X[ E¥)
7]

=" (det? X;)(det® E*)
(1)

= G(X).
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Step 4. In order to prove the theorem for all matrices of a given size,
we show that it suffices to prove it in the special case where all the entries of
the bottom row are zero except possibly for the last entry, and the columns
form an orthogonal set.

Given X, if the last row of X has a non-zero entry, we may by elementary
operations of the specified types bring the matrix to the form

*
D=[0...0)\]’

where A # 0. If the last row of X has no non-zero entry, it is already of
this form, with A = 0. One now applies the Gram-Schmidt process to the
columns of this matrix. The first column is left as is. At the general step, the
78 column is replaced by itself minus scalar multiples of the earlier columns.
The Gram-Schmidt process thus involves only elementary column operations
of type (2). And the zeros in the last row remain unchanged during the
process. At the end of the process, the columns are orthogonal, and the
matrix still has the form of D.

Step 5. We prove the theorem, by induction on 7.

If n =1, then k = 1 and Step 1 applies. If n = 2, then k =1 or k = 2,
and Step 1 applies. Now suppose the theorem holds for matrices having fewer
than n rows. We prove it for matrices of size n by k. In view of Step 1, we
need only consider the case 1 < k£ < n. In view of Step 4, we may assume
that all entries in the bottom row of X, except possibly for the last, are zero,
and that the columns of X are orthogonal. Then X has the form

X = by oo br_i by ;
0 - 0 A

the vectors b; of R”~1 are orthogonal because the columns of X are orthog-
onal vectors in R®. For convenience in notation, let B and C denote the
matrices

B = [b] bk] and C = [b1 bk—l]-
We compute F'(X) in terms of B and C as follows:

F(X) = [Ibaff? -+~ [[be=alf* (IIbell® + A%) by Step 2,
= F(B) + \2F(C).

To compute G(X), we break the summation in the definition of G(X)
into two parts, according to the value of ¢,. We have

(*) G(X)= ) det’ X;+ ) det’ X;.

tx<n fx=n
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Now if I = (41, ..., %) is an ascending k-tuple with ¢, < n, then X; = Bj.
Hence the first summation in (%) equals G(B). On the other hand, if i; = n,
one computes

detX(il, ceny ik_l,n) = :E)\ det C(il, ey ik—l)-
It follows that the second summation in (*) equals A2G(C). Then
G(X) = G(B) + M*G(C).

The induction hypothesis tells us that F(B) = G(B) and F(C) = G(C). 1t
follows that F'(X) = G(X). O

EXERCISES

1. Let

I
[~ =R )
O -0 o

QO e O

(a) Find X*'. X.
(b) Find V(X).
2. Let x3. ..., xx be vectors in R*. Show that
V(xi, ..., Axi, ..o, xk) = AV(xa, ..., X&)
3. Let h : R® — R" be the function h(x) = Ax. If P is a k-dimensional
parallelopiped in R™, find the volume of h(P) in terms of the volume of P.
4. (a) Use Theorem 21.4 to verify the last equation stated in Example 1.
(b) Verify this equation by direct computation(!).
5. Prove the following:

Theorem. Let W be an n-dimensional vector space with an inner
product. Then there erists a unique real-valued function V(xy, ...,
xi) of k-tuples of vectors of W such that:

(i) Ezchanging x; with x; does not change the value of V.
(ii) Replacing x; by x: + cx; (for j # i) does not change the value

of V.
(iil) Replacting x; by Ax; multiplies the value of V by |A|.
(iv) If the x; are orthonormal, then V(x1, ..., xx) = 1.

Proof. (a) Prove uniqueness. [Hint: Use the Gram-Schmidt process.]

(b) Prove existence. [Hint: If f : W — R™ is a linear transformation
that carries an orthonormal basis to an orthonormal basis, then f
carries the inner product on W to the dot product on R™.]
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§22. THE VOLUME OF A PARAMETRIZED-MANIFOLD

Now we define what we mean by a parametrized-manifold in R*, and we
define the volume of such an object. This definition generalizes the definitions
given in calculus for the length of a parametrized-curve, and the area of a
parametrized-surface, in R3.

Definition. Let k <n. Let A be open in R¥, and let @ : A — R" be a
map of class C™(r > 1). The set Y = a(A), together with the map a, con-
stitute what is called parametrized-manifold, of dimension k. We denote
this parametrized-manifold by Y, ; and we define the (k-dimensional) volume
of Y, by the equation

oYa) = [ V(Da),
A
provided the integral exists.

Let us give a plausibility argument to justify this definiiion of volume.
Suppose A is the interior of a rectangle @ in R¥, and suppose a : A — R*
can be extended to be of class C" in a neighborhood of Q. Let Y = a(A).

Let P be a partition of (). Consider one of the subrectangles

R= [al,al =+ hI] X -0 X [ak,ak =+ hk]
determined by P. Now R is mapped by & onto a “curved rectangle” contained
in Y. The edge of R having endpoints a and a + h;e; is mapped by a into a
curve in R™; the vector joining the initial point of this curve to the final point
is the vector
a(a + hie;) — a(a).
A first-order approximation to this vector is, as we know, the vector

Vi = Da(a) . h,-e,- = (aa/ax,) . h,'.

NN

"}\ P

Z2

hz{ L&\}i\\ = ‘ WA 1A
—E L e

Figure 22.1



§22. The Volume of a Parametrized-Manifold

It is plausible therefore to consider the k-dimensional parallelopiped P whose
edges are the vectors v; to be in some sense a first-order approximation to
the “curved rectangle” a(R). See Figure 22.1. The k-dimensional volume of
P is the number

V(vi, ..., vi) = V(0af0z:, ..., dafOz) - (hy-- - hi)
= V(Da(a)) - v(R).

When we sum this expression over all subrectangles R, we obtain a number
which lies between the lower and upper sums for the function V(Da) relative
to the partition P. Hence this sum is an approximation to the integral

/A V(Da);

the approximation may be made as close as we wish by choosing an appropri-
ate partition P.

We now define the integral of a scalar function over a parametrized-
manifold.

Definition. Let A be open in R¥; let @ : A — R" be of class CT; let
Y = a(A). Let f be a real-valued continuous function defined at each point
of Y. We define the integral of f over Y,, with respect to volume, by
the equation

[ rav=[(foaypa),
Yo A
provided this integral exists.

Here we are reverting to “calculus notation” in using the meaningless
symbol dV to denote the “integral with respect to volume.” Note that in this
notation,

v(Ya)::/ dv.

o

We show that this integral is “invariant under reparametrization.”

Theorem 22.1. Let g: A — B be a diffeomorphism of open sets
inR*. Let 3: B —R" be amap of classC™; let Y = B(B). Let a = Bog;
thena: A—-R" and Y = a(A). If f: Y — R is a continuous function,
then f is integrable over Yy if and only if it is integrable over Y,; in this
case

/de: fav.
Yo Ys

In particular, v(Yy) = v(Yp).

189
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Figure 22.2

Proof. We must show that

[V = [ eav(Da),
B A

where one integral exists if the other does. See Figure 22.2.
The change of variables theorem tells us that

/B (f o BV (DB) = / ((f o B) 0 9) (V(DB) 0 g)| det Dgl.

We show that
(V(DB) o g)|det Dg| = V(Da),
and the proof is complete. Let x denote the general point of A; let y = g(x).
By the chain rule,
Da(x) = DB(y) - Dg(x).
Then
[V(Doz(x))]2 = det(Dg(x)" - DB(y)" - DB(y) - Dg(x))
= det(Dg(x))’[V (D))

Our desired equation follows. [

A remark on notation. In this book, we shall use the symbol dV when
dealing with the integral with respect to volume, to avoid confusion with
the differential operator d and the notation [, dw, which we shall introduce
in succeeding chapters. The integrals [, dV and [, dw are quite different
notions. It is however common in the literature to use the same symbol d
in both situations, and the reader must determine from the context which
meaning is intended.
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EXAMPLE 1. Let A be an open interval in R?, and let a : A — R" be a map
of class C". Let Y = a(A). Then Y, is called a parametrized-curve in R?,
and its 1-dimensional volume is often called its length. This length is given
by the formula

2 2] 1/2
‘U(Ya)=/AV(DQ)=/A{(%> ++(d:t")] y

since Da is the column matrix whose entries are the functions da/dt. This
formula may be familiar to you from calculus, in the case n = 3, as the formula
for computing the arc length of a parametrized-curve.

EXAMPLE 2. Consider the parametrized-curve
o(t) = (acost,asint) for 0 <t < 3m.

Using the formula of Example 1, we compute its length as
3
/ [a®sin®t + a® cos® t]'/? = 37a.
0

See Figure 22.3. Since « is not one-to-one, what this number measures is not
the actual length of the image set (which is the circle of radius a) but rather
the distance travelled by a particle whose equation of motion is x = (%) for
0 < t < 3w. We shall later restrict ourselves to parametrizations that are
one-to-one, to avoid this situation.

o
N
| 1
0 3T
Figure 22.8

EXAMPLE 3. Let A be open in R%; let @ : A — R™ be of class C”; let
Y = a(A). Then Y, is called a parametrized-surface in R", and its 2-
dimensional volume is often called its area.

Let us consider the case n = 3. If we use (z,y) as the general point of

R?, then Da = [fa/0z 0a/dy], and

u(Ys) = /A V(Da) = /A

da  da
Oz = dy|’
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(See Example 1 of the preceding section.) In particular, if & has the form

a(x)y) = (Z)y’ f(:v,y)),

where f : A — R is a C" function, then Y is simply the graph of f, and we

have
1 0
Da = 0 1 ,
of/0x 0f/dy
so that

o(Ya) = / (1 +(0F/9z) + (8F/0w)1"*.

A

You may recognize these as formulas for surface area given in calculus.

EXAMPLE 4. Suppose A is the open disc % + 3> < @® in R?, and f is the

function
f(z,y)=[a® - 2" — "}/

The graph of f is called a hemisphere of radius a. See Figure 22.4.

Figure 22.4

Let o(z,y) = (z,y, f(z,y)). You can check that
V(Da) = a/(a® - 2° - y*)'",

so that (using polar coordinates)

U(Ya)=/Bar/(a2—1‘2)l/2,
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where B is the open set (0, a) x (0, 27) in the (r,6)-plane. This is an improper
integral, so we cannot use the Fubini theorem, which was proved only for the
ordinary integral. Instead, we integrate over the set (0,a,) % (0, 27) using the
Fubini theorem, where 0 < a,, < a, and then we let a,, — a. We have

v(Ya) = lim (=27a)[(a® — a2)'/? — a] = 27a’.

A different method for computing this area, one that avoids improper
integrals, is given in §25.

EXERCISES

1. Let A be open in R¥; let @ : A — R” be of class C”; let Y = a(A).
Suppose h : R® — R™ is an isometry; let Z = h(Y) and let 8 = ho a.
Show that Y, and Zs have the same volume.

2. Let A be open in R*; let f : A — R be of class C"; let Y be the graph
of f in R**!) parametrized by the function & : A — RF¥! given by
a(x) = (x, f(x)) Express v(Ya) as an integral.

3. Let A be open in R*; let @ : A — R" be of class C"; let Y = a(A).
The centroid c(Y,) of the parametrized-manifold Yq is the point of R™

whose i*" coordinate is given by the equation

ci(Y) = [1/0(¥)] / r dV,

where 7, : R® — R is the #*" projection function.

(a} Find the centroid of the parametrized-curve
o(t) = (acost,asint) with 0<t <.

(b) Find the centroid of the hemisphere of radius a in R®. (See Exam-
ple 4.)

*4. The following exercise gives a strong plausibility argument justifying our
definition of volume. We consider only the case of a surface in R®, but a
similar result holds in general.

Given three points a,b,c in R®, let C be the matrix with columns
b—a and c—a. The transformation h : R*> — R® given by h(x) = C-x+a
carries 0, e,,e; to a, b, c, respectively. The image Y under A of the set

A={(z,y) |2>0 and y>0 and z+y<1}
is called the (open) triangle in R® with vertices a, b, c. See Figure 22.5.

The area of the parametrized-surface Y}, is one-half the area of the par-
allelopiped with edges b — a and ¢ — a, as you can check.
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Figure 22.5

Now let (Q be a rectangle in R? and let « :  — R®; suppose  extends
to a map of class C" defined in an open set containing (). Let P be a
partition of (). Let R be a subrectangle determined by P, say

R=[a,a+h]x[b,b+ k]
Consider the triangle A1(R) having vertices
ofa,b), a(a+hb), and ao(a+h,b+k)
and the triangle A;(R) having vertices
ao(a,b), a(e,b+k), and ola+h,b+k).

We consider these two triangles to be an approximation to the “curved
rectangle” a(R). See Figure 22.6. We then define

A(P) =Y [v(A1(R)) + v(82(R))],
R

where the sum extends over all subrectangles R determined by P. This
number is the area of a polyhedral surface that approximates a(Q).
Prove the following:

Theorem. Let Q be a rectangle inR? and leta: A — R® be a
map of class C” defined in an open set containing (). Given e > 0,
there its a § > 0 such that for every partition P of @ of mesh less
than 6,

A(P) - /Q V(Da)l <e
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@b+k)]  [@+hbsk)

| R |
a,b) (a+h,b)

Figure 22.6

Proof. (a) Given points X1, ..., X¢ of @, let

Dlaq (x;) D;al (x4)
Da(X1, ey XG) = D]C!z(Xz) Dz&;()(s)
Dlas(xs) Dzas(xe)

Then D is just the matrix Do with its entries evalnated at different

points of (). Show that if R is a subrectangle determined by P, then
there are points X1, ..., x¢ of R such that

V(Da(xl, ciey xs)) -v(R).

oo | =

’U(A1(R)) =

Prove a similar result for U(A;(R)).

(b) Given € > 0, show one can choose 8§ > 0 so that if xi,y; € ) with
|xi —yi|<bfori=1,...,6, then

[V(Datxs, ..., x6)) = V(Da(ys, ..., y6))| < €.

(c) Prove the theorem.
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§23. MANIFOLDS IN R"

Manifolds form one of the most important classes of spaces in mathemat-

ics. They are useful in such diverse fields as differential geometry, theoretical

physics, and algebraic topology. We shall restrict ourselves in this book to

manifolds that are submanifolds of euclidean space R™. In a final chapter, we

define abstract manifolds and discuss how our results generalize to that case.
We begin by defining a particular kind of manifold.

Definition. Let k& > 0. Suppose that M is a subspace of R* having
the following property: For each p € M, there is a set V' containing p that
is open in M, a set U that is open in R¥, and a continuous map a: U =V
carrying U onto V in a one-to-one fashion, such that:

(1) aisof class C.
(2) @~} : V — U 1s continuous.
(3) Da(x) has rank k for each x € U.

Then M is called a k-manifold without boundary in R”, of class C". The
map a is called a coordinate patch on M about p.

Let us explore the geometric meaning of the various conditions in this
definition.

EXAMPLE 1. Consider the case k = 1. If & is a coordinate patch on M, the
condition that Do have rank 1 means merely that Do # 0. This condition
rules out the possibility that M could have “cusps” and “corners.” For exam-
ple, let & : R — R? be given by the equation a(t) = (t°,¢%), and let M be the
image set of &. Then M has a cusp at the origin. (See Figure 23.1.) Here a
is of class C* and a™! is continuous, but Do does not have rank 1 at ¢ = 0.

Figure 23.1

Similarly, let 3 : R — R? be given by 8(t) = (t°,[t%]), and let N be the
image set of 3. Then N has a corner at the origin. (See Figure 23.2.) Here
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Figure 23.2

B is of class C? (as you can check) and ™! is continuous, but DB does not
have rank 1 at t = 0.

EXAMPLE 2. Consider the case k = 2. The condition that Da(a) have rank 2
means that the columns dor/8z; and da/Bz2 of Da are independent at a.
Note that da/8z; is the velocity vector of the curve f(t) = a(a + te;) and
is thus tangent to the surface M. Then da/dz; and Oa/Oz; span a 2-
dimensional “tangent plane” to M. See Figure 23.3.

Figure 23.3

As an example of what can happen when this condition fails, consider the
function o : R? — R® given by the equation

a(z,y) = (2(z* +9°), y(2* + ), & + 1),
and let M be the image set of &. Then M fails to have a tangent plane at

the origin. See Figure 23.4. The map « is of class O™ and a~! is continuous,
but Do does not have rank 2 at 0.
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Figure 23.4

EXAMPLE 3. The condition that a~! be continuous also rules out various
sorts of “pathological behavior.” For instance, let & be the map

a(t) = (sin2t) (|cost]|, sint) for 0<t< 7,

and let M be the image set of «. Then M is a “figure eight” in the plane.
The map « is of class C! with Da of rank 1, and o maps the interval (0, 7)
in a one-to-one fashion onto M. But the function &~ is not continuous. For
continuity of ! means that o carries any set Up that is open in U onto
a set that is open in M. In this case, the image of the smaller interval Up
pictured in Figure 23.5 is not open in M. Another way of seeing that alis
not continuous is to note that points near 0 in M need not map under o!
to points near 7 /2.

o
7 T~
Us M
€ e ?
/2 T
Figure 23.5

EXAMPLE 4. Let A be open in R*; let & : A — R" be of class C"; let
Y = a(A). Then Y, is a parametrized-manifold; but Y need not be a mani-
fold. However, if a is one-to-one and a~! is continuous and Da has rank k,
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then Y is a manifold without boundary, and in fact Y is covered by the single
coordinate patch a.

Now we define what we mean by a manifold in general. We must first gen-
eralize our notion of differentiability to functions that are defined on arbitrary
subsets of R¥.

Definition. Let S be a subset of R¥; let f : § — R™. We say that f is
of class C" on S if f may be extended to a function g : U — R™ that is of
class C" on an open set U of R* containing §.

It follows from this definition that a composite of C™ functions is of class
CT. Suppose S C R¥ and f; : § — R™ is of class C". Next, suppose that
T CR"*and fi(S)CTand f; : T — RP is of class C". Then fyof, : § — RP
is of class C”. For if g; is a C" extension of f, to an open set U in R¥, and
if g3 is a C extension of f, to an open set V in R, then g, 0 g; is a C"
extension of f;o0 f) that is defined on the open set g; ' (V) of R* containing S.

The following lemma shows that f is of class C" if it is locally of class C":

Lemma 23.1. Let S be a subset of R*; let f : § — R™. If for each
x € §, there is a neighborhood Uy of x and a function g, : Ux — R" of
class C™ that agrees with f on UxN S, then f is of class C™ on S.

Proof. The lemma was given as an exercise in §16; we provide a proof
here. Cover S by the neighborhoods Uy; let A be the union of these neigh-
borhoods; let {¢;} be a partition of unity on A of class C" dominated by the
collection {Ux}. For each ¢, choose one of the neighborhoods Uy containing
the support of ¢;, and let g; denote the C™ function g, : Uy — R™. The C"
function ¢;g; : Ux — R" vanishes outside a closed subset of U, ; we extend
it to a C function h; on all of A by letting it vanish outside U,. Then we
define

o0
g(x) = Y hi(x)
i=1
for each x € A. Each point of A has a neighborhood on which g equals a
finite sum of functions h;; thus ¢ is of class C™ on this neighborhood and
hence on all of A. Furthermore, if x € S, then

hi(x) = ¢i(x)g:(x) = ¢u(x) f(x)

for each ¢ for which ¢;(x) # 0. Hence if x € §,

96 = 3 ¢(x)f(x) = f(x). O
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Definition. Let H* denote upper half-space in R*, consisting of those
x € RF for which z; > 0. Let Hi denote the open upper half-space,
consisting of those x for which z; > 0.

We shall be particularly interested in functions defined on sets that are
open in H* but not open in R*. In this situation, we have the following useful
result:

Lemma 23.2. Let U be open in H* but not in R¥; let a: U — R"
be of class C™. Let B :U' — R" be a C™ extension of a defined on an
open set U’ of R*. Then for x € U, the derivative DB(x) depends only
on the function a and is independent of the extension . It follows that
we may denote this derivative by Da(x) without ambiguity.

Proof. Note that to calculate the partial derivative 83;/9z; at x, we
form the difference quotient

[B(x + he;) — B(x))/h

and take the limit as h approaches 0. For calculation purposes, it suffices to
let h approach 0 through positive values. In that case, if x is in H* then so
is x 4+ he;. Since the functions # and « agree at points of H¥, the value of
Df(x) depends only on . See Figure 23.6. O

Figure 23.6

Now we define what we mean by a manifold.

Definition. Let £ > 0. A k-manifold in R™ of class C” is a subspace
M of R™ having the following property: For each p € M, there is an open
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set V of M containing p, a set U that is open in either R* or H*, and a
continuous map & : U — V carrying U onto V in a one-to-one fashion, such
that:

(1) ais of class C".
(2) @~!:V — U is continuous.
(3) Da(x) has rank k for each x € U.

The map « is called a coordinate patch on M about p.

We extend the definition to the case k = 0 by declaring a discrete collec-
tion of points in R” to be a 0-manifold in R".

Note that a manifold without boundary is simply the special case of a
manifold where all the coordinate patches have domains that are open in R¥.

Figure 23.7 illustrates a 2-manifold in R3. Indicated are two coordinate
patches on M, one whose domain is open in R? and the other whose domain
is open in H? but not in R2.

Figure 23.7

It seems clear from this figure that in a k-manifold, there are two kinds of
points, those that have neighborhoods that look like open k-balls, and those
that do not but instead have neighborhoods that look like open half-balls of
dimension k. The latter points constitute what we shall call the boundary
of M. Making this definition precise, however, requires a certain amount of
effort. We shall deal with this question in the next section.

We close this section with the following elementary result:

201
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Lemma 23.3. Let M be a manifold in R*, and let a : U — V be
a coordinate patch on M. If U, is a subset of U that is open in U, then
the restriction of a to Uy is also a coordinate patch on M.

Proof. The fact that Uy is open in U and a~! is continuous implies that
the set Vo = a(Up) is open in V. Then Uy is open in R* or H¥ (according
as U is open in R* or H¥), and V} is open in M. Then the map a|U is a
coordinate patch on M: it carries Up onto Vj in a one-to-one fashion; it is of
class CT because « is; its inverse is continuous being simply a restriction of
a~1; and its derivative has rank k because Da does. O

Note that this result would not hold if we had not required ! to be
continuous. The map a of Example 3 satisfies all the other conditions for
a coordinate patch, but the restricted map a|Up is not a coordinate patch
on M, because its image is not open in M.

EXERCISES

1. Let & : R — R? be the map a(z) = (z,z?); let M be the image set of
«. Show that M is a 1-manifold in R? covered by the single coordinate
patch a.

2. Let 3 : H' — R? be the map B(z) = (z,z?); let N be the image set of 3.
Show that NV is a 1-manifold in RZ,

3. (a) Show that the unit circle S* is a 1-manifold in R®.
(b) Show that the function « : [0,1) — S* given by

ao(t) = (cos 2xt,sin 27t)

is not a coordinate patch on S!.

4. Let A be open in R¥;let f: A — R be of class C". Show that the graph
of f is a k-manifold in R**1,

5. Show that if M is a k-manifold without boundary in R™, and if N is an
¢-manifold in R, then M x N is a k + £ manifold in R™t7,

6. (a) Show that I =[0,1] is a 1-manifold in R'.
(b) Is I x I a 2-manifold in R?? Justify your answer.
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§24. THE BOUNDARY OF A MANIFOLD

In this section, we make precise what we mean by the boundary of a manifold;
and we prove a theorem that is useful in practice for constructing manifolds.

To begin, we derive an important property of coordinate patches, namely,
the fact that they “overlap differentiably.” We make this statement more
precise as follows:

Theorem 24.1. Let M be a k-manifold in R", of class CT. Let
oy : Uy —» Vg and o, : Uy — V; be coordinate patches on M, with
W =VynV; non-empty. Let W; = a7}(W). Then the map

01-1000:W0—+W1

is of class CT, and its derivative is non-singular.

Typical cases are pictured in Figure 24.1. We often call al'1 o ap the
transition function between the coordinate patches ag and a;.

Figure 24.1

Proof. 1t suffices to show that if & : U — V is a coordinate patch on M,
then a=! : V — R* is of class C", as a map of the subset V of R” into R¥. For
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then it follows that, since ag and al-1 are of class C", so is their composite
a;! o ag. The same argument applies to show ag'oa is of class CT; then
the chain rule implies that both these transition functions have non-singular
derivatives.

To prove that a~! is of class C7, it suffices (by Lemma 23.1) to show that
it is locally of class C*. Let po be a point of V; let a~1(pg) = xo. We show
a~! extends to a C” function defined in a neighborhood of pg in R™.

Let us first consider the case where U is open in H* but not in R¥. By
assumption, we can extend a to a C™ map 3 of an open set U’ of R into
R". Now Da(xo) has rank k, so some k rows of this matrix are independent;
assume for convenience the first k rows are independent. Let 7 : R* — R¥
project R™ onto its first k coordinates. Then the map g = o3 maps U’ into
R¥, and Dg(xo) is non-singular. By the inverse function theorem, g is a C"
diffeomorphism of an open set W of R* about xo with an open set in RE. See

Figure 24.2.
M
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Figure 24.2
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We show that the map A = g~! o m, which is of class C", is the desired
extension of a@~! to a neighborhood A of po. To begin, note that the set
Uy = WNU is open in U, so that the set Vo = a(Up) is open in V; this



§24. The Boundary of a Manifold 205

means there is an open set A of R™ such that ANV = V. We can choose A
so it is contained in the domain of A (by intersecting with ==1(g(W)) if
necessary). Then h : A — R* is of class C"; and if p € ANV = Vj, then we
let x = a~(p) and compute

h(p) = h(a(x)) = g7! (7(a(x))) = g7 (9(x)) = x = a"}(p),

as desired.
A similar argument holds if U is open in R¥. In this case, we set U’ = U
and 8 = a, and the preceding argument proceeds unchanged. O

Now we define the boundary of a manifold.

Definition. Let M be a k-manifold in R?; let p € M. If there is a
coordinate patch a : U — V on M about p such that U is open in R¥, we
say p is an interior point of M. Otherwise, we say p is a boundary point
of M. We denote the set of boundary points of M by M, and call this set
the boundary of M.

Note that our use here of the terms “interior” and “boundary” has noth-
ing to do with the way these terms are used in general topology. Any subset .S
of R™ has an interior and a boundary and an exterior in the topological sense,
which we denote by Int .S and Bd S and Ext S, respectively. For a mani-
fold M, we denote its boundary by M and its interior by M — OM.

Given M, one can readily identify the boundary points of M by use of
the following criterion:

Lemma 24.2. Let M be a k-manifold in R*; let a« : U — V be a
coordinate patch about the point p of M.

(a) If U is open in R, then p is an interior point of M.

(b) If U is open in H* and if p = a(xq) for xo € HX, then p is an
interior point of M.

(¢) If U is open in H* and p = a(xo) for xo € R*~1 x 0, then p is a
boundary point of M.

Proof. (a) is immediate from the definition. (b) is almost as easy. Given
a:U — V asin (b), let Up = UNHE and let Vo = a(Up). Then a|Us,
mapping Uy onto Vj, is a coordinate patch about p, with U open in R¥.

We prove (c). Let ag : Uy — Vj be a coordinate patch about p, with
Us open in H* and p = ag(xp) for xo € R*~1 x 0. We assume there is a
coordinate patch a; : U; — V) about p with U; open in R*. and derive a
contradiction.
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Since V, and V; are open in M, the set W = VyNn V] is also open in M.
Let W; = a; *(W) for 1 = 0,1; then Wy is open in H* and contains xg, and
Wi is open in R¥. The preceding theorem tells us that the transition function

a610a1:W1—>W0

is a map of class C” carrying W; onto Wy in a one-to-one fashion, with
non-singular derivative. Then Theorem 8.2 tells us that the image set of this
map is open in R*. But W, is contained in H* and contains the point xg of
RF-1 x 0, so it is not open in R¥! See Figure 24.3. O

Figure 24.3

Note that HF is itself a k-manifold in R¥; and it follows from this lemma
that OH* = R¥~1 x 0.

Theorem 24.3. Let M be a k-manifold in R, of class CT. If OM
is non-empty, then OM is a k — 1 manifold without boundary in R" of
class CT.

Proof. Letp € OM. Let a : U — V be a coordinate patch on M
about p. Then U is open in H* and p = a(xo) for some xo € OHF. By the
preceding lemma, each point of U N Hﬁ_ is mapped by « to an interior point
of M, and each point of U N (OH") is mapped to a point of M. Thus the
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restriction of & to U N (OHF) carries this set in a one-to-one fashion onto the
open set Vo = VNOM of OM. Let Uy be the open set of R¥~1 such that
Uo x 0 = U N OHF; if x € Uy, define ag(x) = a(x,0). Then aq : Uy — Vj is
a coordinate patch on JM. It is of class C” because « is, and its derivative
has rank k — 1 because Dag(x) consists simply of the first £ — 1 columns
of the matrix Da(x,0). The inverse ag ' is continuous because it equals the
restriction to Vj of the continuous function a~1, followed by projection of R*
onto its first £ — 1 coordinates. [

The coordinate patch ag on M constructed in the proof of this theorem
is said to be obtained by restricting the coordinate patch a on M.

Finally, we prove a theorem that is useful in practice for constructing
manifolds.

Theorem 24.4. Let O be open inR"; let f : @ — R be of class C".
Let M be the set of points x for which f(x) = 0; let N be the set of points
Jor which f(x) > 0. Suppose M is non-empty and D f(x) has rank 1 at
each point of M. Then N is an n-manifold in R* and ON = M.

Proof. Suppose first that p is a point of N such that f(p) > 0. Let
U be the open set in R™ consisting of all points x for which f(x) > 0; let
a : U — U be the identity map. Then a is (trivially) a coordinate patch
on N about p whose domain is open in R".

Now suppose that f(p) = 0. Since Df(p) is non-zero, at least one of
the partial derivatives D;f(p) is non-zero. Suppose D,f(p) # 0. Define
F : O — R" by the equation F(x) = (z1, ..., Zn—1, f(x)). Then

I.., 0
DF = ,

* Dpf

so that DF'(p) is non-singular. It follows that F is a diffeomorphism of a
neighborhood A of p in R” with an open set B of R*. Furthermore, F carries
the open set ANN of N onto the open set B NH™ of H*, since x € N if and
only if f(x) > 0. It also carries AN M onto B N OH", since x € M if and
only if f(x) = 0. Then F~! : BNH® — AN N is the required coordinate
patch on N. See Figure 24.4. OO

Definition. Let B"(a) consist of all points x of R for which ||x|| < a,
and let 5"~1(a) consist of all x for which ||x|| = a. We call them the n-ball
and the n — 1 sphere, respectively, of radius a.
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Corollary 24.5. The n-ball B*(a) is an n-manifold in R™ of class
C=, and S"~1(a) = 0B"(a).

Proof. We apply the preceding theorem to the function f(x) = a? —

|x]|2. Then
Df(x) =[(-221) --- (-2zn))

which is non-zero at each point of S*~1(a). O

EXERCISES

1. Show that the solid torus is a 3-manifold, and its boundary is the torus T
(See the exercises of §17.) [Hint: Write the equation for T in cartesian
coordinates and apply Theorem 24.4.]

2. Prove the following:

Theorem. Let f:R"** — R" be of class C™. Let M be the set of all
x such that f(x) = 0. Assume that M is non-empty and that Df(x)
has rank n forx € M. Then M is a k-manifold without boundary in
R***. Furthermore, if N is the set of all x for which

fix) =+ = fa-1(x) =0 and fa(x) 20,

and if the matriz

(fr, ..., fam1)/Ox
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has rank n — 1 at each point of N, then N is a k + 1 manifold, and
ON =M.

3. Let f,g : R®> — R be of class C". Under what conditions can you be
sure that the solution set of the system of equations f(z,y,z) = 0,
9(z,y,2) = 0 is a smooth curve without singularities (i.e., a 1-manifold
without boundary)?

4. Show that the upper hemisphere of $"~?(a), defined by the equation
E}"a)=8"""(a)nH",

is an n — 1 manifold. What is its boundary?

5. Let O(3) denote the set of all orthogonal 3 by 3 matrices, considered as
a subspace of R®.

(a) Define a C'™® function f : R® — R® such that ©(3) is the solution set
of the equation f(x)=0.
(b) Show that O(3) is a compact 3-manifold in R® without boundary.

[Hint: Show the rows of D f(x) are independent if x € O(3).]

6. Let O(n) denote the set of all orthogonal n by n matrices, considered
as a subspace of R™, where N = n?. Show O(n) is a compact manifold
without boundary. What is its dimension?

The manifold O(n) is a particular example of what is called a Lie
group (pronounced “lee group”). It is a group under the operation of
matrix multiplication; it is a C'° manifold; and the product operation and
the map A — A~ are C® maps. Lie groups are of increasing importance
in theoretical physics, as well as in mathematics.

§25. INTEGRATING A SCALAR FUNCTION OVER A MANIFOLD

Now we define what we mean by the integral of a continuous scalar function f
over a manifold M in R". For simplicity, we shall restrict ourselves to the case
where M is compact. The extension to the general case can be carried out
by methods analogous to those used in §16 in treating the extended integral.

First we define the integral in the case where the support of f can be
covered by a single coordinate patch.

Definition. Let M be a compact k-manifold in R", of class C". Let
f M — R” be a continuous function. Let C = Support f; then C is
compact. Suppose there is a coordinate patch a : U — V on M such that
C C V. Now a~}(C) is compact. Therefore, by replacing U by a smaller open
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set if necessary, we can assume that U is bounded. We define the integral
of f over M by the equation

/M fdv = /Int U(foa)V(Da).

Here Int U = U if U is open in R%, and Int U = U NHX if U is open in H*
but not in R¥.

It is easy to see this integral exists as an ordinary integral, and hence as
an extended integral: The function F' = (f o @)V (Da) is continuous on U
and vanishes outside the compact set a~!(C); hence F is bounded. If U is
open in R¥, then F vanishes near each point xo of Bd U. If U is not open
in R¥, then F vanishes near each point of Bd U not in OH*, a set that has
measure zero in RF. In either case, F is integrable over U and hence over
Int U. See Figure 25.1.

2,

Figure 25.1

Lemma 25.1.  If the support of f can be covered by a single coor-
dinate patch, the integral [, f dV is well-defined, independent of the
choice of coordinate patch.
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Proof. We prove a preliminary result. Let a : U — V be a coordinate
patch containing the support of f. Let W be an open set in U such that
a(W) also contains the support of f. Then

[ (foa(Da)= [ (eav(Day
Int W Int U

the (ordinary) integrals over W and V' are equal because the integrand van-
ishes outside W; then one applies Theorem 13.6.

Let a; : U; — V; for i = 0,1 be coordinate patches on M such that both
Vo and V] contain the support of f. We wish to show that

/ (foao)V(Dao) = / (foal)V(Dal).
Int Uo Int Uy

Let W = VynV] and let W; = a,-'l(W). In view of the result of the preceding
paragraph, it suffices to show that this equation holds with U; replaced by
W;, for 1= 0,1. Since a7! o ag : Int Wy — Int W, is a diffeomorphism, this
result follows at once from Theorem 22.1. O

To define f;, f AV in general, we use a partition of unity on M.

Lemma 25.2. Let M be a compact k-manifold in R”, of class C".
Given a covering of M by coordinate patches, there ezists a finite col-
lection of C* functions ¢, ..., ¢, mapping R® into R such that:

(1) ¢i(x) > 0 for all x.

(2) Given i, the support of ¢; is compact and there is a coordinate
patch o; : Uy — V; belonging to the given covering such that

((Support ¢;)N M) C Vi.
) Ydi(x)=1 for xe M.

We call {¢y, ..., ¢} a partition of unity on M dominated by the
given collection of coordinate patches.

Proof.  For each coordinate patch & : U — V belonging to the given
collection, choose an open set Ay of R” such that Ay N M = V. Let A be
the union of the sets Ay . Choose a partition of unity on A that is dominated
by this open covering of A. Local finiteness guarantees that all but finitely
many of the functions in the partition of unity vanish identically on M. Let
o1, ..., ¢ be those that donot. O

Definition. Let M be a compact k-manifold in R®, of class C". Let
f: M — R be a continuous function. Choose a partition of unity @1, ..., ¢¢



212 Manifolds Chapter 5

on M that is dominated by the collection of all coordinate patches on M. We
define the integral of f over M by the equation

¢
dv = / & f) dV].
|1 So(f @) av)
Then we define the (k-dimensional) volume of M by the equation

o(M) = /M 1 av.

If the support of f happens to lie in a single coordinate patcha : U — V/,
this definition agrees with the preceding definition. For in that case, letting
A =1Int U, we have

‘ ¢
; [/M(¢xf) dV] = ;[/A(qﬁ, oca)(foa)V(Da)] by definition,
[4
= /A [E (¢ioa)(foa)V(Da)] by linearity,
i=1

¢
= /(f oa)V(Da) because Z(qﬁ; oa)=1on A,
A i=1

=/ fav by definition.
M

We note also that this definition is independent of the choice of the par-
tition of unity. Let %, ..., ¥, be another choice for the partition of unity.
Because the support of 9; f lies in a single coordinate patch, we can apply
the computation just given (replacing f by %; f) to conclude that

¢
S Gwnavi= [ i) av
Summing over j, we have
m ¢t m
[/ (&5 f)dV]= ) [[ (¥;f) dV].
Symmetry shows that this double summation also equals

t
St @nav,

as desired.
Linearity of the integral follows at once. We state it formally as a theorem:
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Theorem 25.3.  Let M be a compact k-manifold in R*, of class C".
Let f,g: M — R be continuous. Then

/M(af+bg)dV = a/Mde + b/Mng. 0

This definition of the integral f, e [ AV is satisfactory for theoretical pur-
poses, but not for practical purposes. If one wishes actually to integrate a
function over the n — 1 sphere §"~!, for example, what one does is to break
S57-1 into suitable “pieces,” integrate over each piece separately, and add the
results together. We now prove a theorem that makes this procedure more
precise. We shall use this result in some examples and exercises.

Definition. Let M be a compact k-manifold in R®, of class C7. A
subset D of M is said to have measure zero in M if it can be covered by
countably many coordinate patches a; : U; — V; such that the set

D; = a‘l(D nv;)
has measure zero in R* for each i.

An equivalent definition is to require that for any coordinate patch
a:U — V on M, the set a~!(D N V) have measure zero in R%. To verify
this fact, it suffices to show that a~!(D NV NV;) has measure zero for each .
And this follows from the fact that the set ;" }(DNV NV;) has measure zero
because it is a subset of D;, and that a~! o a; is of class C".

*Theorem 25.4. Let M be a compact k-manifold in R*, of class
Cr. Let f: M — R be a continuous function. Suppose that a; : A; —
M;, fori=1,..., N, is a coordinate patch on M, such that A; is open
in R and M is the disjoint union of the open sets My, ..., My of M
and a set K of measure zero in M. Then

N
(+) [ 1av=31[ (foavda.

This theorem says that [,  f dV can be evaluated by breaking M up
into pieces that are parametrized-manifolds and integrating f over each piece
separately.

Proof. Since both sides of (x) are linear in f, it suffices to prove the
theorem in the case where the set C' = Support f is covered by a single
coordinate patch o : U — V. We can assume that U is bounded. Then

/M fav = /1 (Joa)V(Da),

by definition.
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Step 1. Let Wi=a '(M;nV)andlet L =a (K NV). Then W; is
open in R¥, and L has measure zero in R¥; and U is the disjoint union of L
and the sets W;. See Figures 25.2 and 25.3. We show first that

[ rav= >l /W eV (Da).

7///4{/

VA

Figure 25.2

/ﬂ/‘/ 1\/;3 /

Figure 25.3

Note that these integrals over W; exist as ordinary integrals. For the
function F' = (f o @)V (Da) is bounded, and F vanishes near each point of
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Bd W; not in L. Then we note that
Yol / F]= / F by additivity,
; ; (Int U)-L

= F since L has measure zero,
Int U

= / fdav by definition.
M
Step 2. We complete the proof by showing that

/F=/F

where F; = (f 0 ;)V (D). See Figure 25.4.

Figure 25.4

The map o !5 a is a diffeomorphism carrying W; onto the open set

B; = oY (M;nV)
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of R*. It follows from the change of variables theorem that

Lf=LR,

just as in Theorem 22.1. To complete the proof, we show that

/E= F.
i A

These integrals may not be ordinary integrals, so some care is required.
Since C' = Support f is closed in M, the set o '(C) is closed in A; and
its complement

D; = A; — a7 (C)

is open in A; and thus in R¥. The function F; vanishes on D;. We apply
additivity of the extended integral to conclude that

The last two integrals vanish. O

EXAMPLE 1. Consider the 2-sphere S$%(a) of radius a in R®. We computed
the area of its open upper hemisphere as 2ma®. (See Example 4 of §22.). Since
the reflection map (z,9, z) — (z,y, —2) is an isometry of R, the open lower
hemisphere also has area 2ma’. (See the exercises of §22.) Since the upper
and lower hemispheres constitute all of the sphere except for a set of measure
zero in the sphere, it follows that S(a) has area 47a’.

EXAMPLE 2. Here is an alternate method for computing the area of the 2-
sphere; it involves no improper integrals.

Given zp € R with |20] < a, the intersection of S*(a) with the plane
z = 2z is the circle

z=20; 2 +y° =a® - (2).

This fact suggests that we parametrize S*(a) by the function o : A — R®
given by the equation

alt, z) = ((a® — 2%)'% cost, (a® — 2%)'?sint, z),
where A is the set of all (£, z) for which 0 < ¢ < 27 and |2] < a. It is easy

to check that o is a coordinate patch that covers all of $%(a) except for a
great-circle arc, which has measure zero in the sphere. See Figure 25.5. By
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the preceding theorem, we may use this coordinate patch to compute the area
of S%(a). We have

~(a® = 2*)"?sint (=zcost)/(a? — 2%)/?
Da=| (a®-z%)"?cost (-zsint)/(a® — 22)*/? |,
0 1

whence V(Da) = a, as you can check. Then v($%(a)) = [, a = 47a>.

. X

Figure 25.5

o

EXERCISES

1. Check the computations made in Example 2.

2. Let aft), B(t), f(t) be real-valued functions of class C! on [0,1], with
f(t) > 0. Suppose M is a 2-manifold in R® whose intersection with the
plane z =t is the circle

2 2 2
(z-a(t) +(y-B8@) =(f@t)"; z=t
if 0 €t <1, and is empty otherwise.
(a) Set up an integral for the area of M. [Hint: Proceed asin Example 2.]
(b) Evaluate when o and 3 are constant and f(f) = 1 + 2.

(c) What form does the integral take when f is constant and a(t) = 0
and B(t) = at? (This integral cannot be evaluated in terms of the
elementary functions.)

3. Consider the torus T of Exercise 7 of §17.

(a) Find the area of this torus. [Hint: The cylindrical coordinate trans-
formation carries a cylinder onto 7. Parametrize the cylinder using
the fact that its cross-section are circles.]
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(b) Find the area of that portion of T satisfying the condition z2 +
¥ > b

. Let M be a compact k-manifold in R”. Let h : R®™ — R" be an isometry;

let N = h(M). Let f : N — R be a continuous function. Show that N
is a k-manifold in R™, and

/Nde=/M(foh)dV.

Conclude that M and N have the same volume.

. (a) Express the volume of S"(a) in terms of the volume of B"~(a).

[Hint: Follow the pattern of Example 2.]
(b) Show that fort > 0,

U(S"(t)) = Dv(B"(1)).

[Hint: Use the result of Exercise 6 of §19.]

. The centroid of a compact manifold M in R" is defined by a formula

like that given in Exercise 3 of §22. Show that if M is symmetric with
respect to the subspace z; = 0 of R™, then ¢;(M) = 0.

Let E7(a) denote the intersection of $"(a) with upper half-space H"+L,
Let Ap = v(B"(l)).
(2) Find the centroid of E}(a) in terms of A, and An_1.

(b) Find the centroid of E7(a) in terms of the centroid of B} ™*(a). (See
the exercises of §19.)

. Let M and N be compact manifolds without boundary in R™ and R",

respectively.
(a) Let f: M — R and g: N — R be continuous. Show that

/Mfo-ng=[/Mde][/Nng1.

[Hint: Consider the case where the supports of f and g are contained
in coordinate patches.]

(b) Show that v(M x N) = v(M)-v(N).
(c) Find the area of the 2-manifold S* x S' in R,



Differential Forms

We have treated, with considerable generality, two of the major topics of
multivariable calculus—differentiation and integration. We now turn to the
third topic. It is commonly called “vector integral calculus,” and its major
theorems bear the names of Green, Gauss, and Stokes. In calculus, one limits
oneself to curves and surfaces in R3. We shall deal more generally with k-
manifolds in R". In dealing with this general situation, one finds that the
concepts of linear algebra and vector calculus are no longer adequate. One
needs to introduce concepts that are more sophisticated; they constitute a
subject called multilinear algebra that is a sequel to linear algebra.

In the first three sections of this chapter, we introduce this subject; in
these sections we use only the material on linear algebra treated in Chap-
ter 1. In the remainder of the chapter, we combine the notions of multilinear
algebra with results about differentiation from Chapter 2 to define and study
differential forms in R™. Differential forms and their operators are what are
used to replace vector and scalar fields and their operators—grad, curl, and
div—when one passes from R3 to R".

In the succeeding chapter, additional topics, including integration, man-
ifolds, and the change of variables theorem, will be brought into the picture,
in order to treat the generalized version of Stokes’ theorem in R".

219
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§26. MULTILINEAR ALGEBRA

Tensors

Definition. Let V be a vector space. Let V¥ = V x ... x V denote the
set of all k-tuples (vy, ..., vi) of vectors of V. A function f : V¥ — R is
said to be linear in the i*" variable if, given fixed vectors v; for j # 1, the
function T : V — R defined by

T(v) = f(Viy oy Vie1, Vs Vigrs ooy Vi)

is linear. The function f is said to be multilinear if it is linear in the i*h
variable for each ¢. Such a function f is also called a k-tensor, or a tensor of
order k, on V. We denote the set of all k-tensors on V by the symbol L¥(V).
If £ =1, then £}(V') is just the set of all linear transformations f : V — R.
It is sometimes called the dual space of V and denoted by V*.

How this notion of tensor relates to the tensors used by physicists and
geometers remains to be seen.

Theorem 26.1.  The set of all k-tensors on V constitutes a vector
space if we define

(F+9(viy oo vi) = f(ve, o vie) + (v, -y Vi),
(cf)(vl, ceey vk) =c(f(v1, '-"vk))'

Proof. The proof is left as an exercise. The zero tensor is the function
whose value is zero on every k-tuple of vectors. O

Just as is the case with linear transformations, a multilinear transforma-
tion is entirely determined once one knows its values on basis elements. That
we now prove.

Lemma 26.2. Letay, ..., a, be a basis for V. If f,g: V¥ =R are
k-tensors on V, and if

f(ain '--aaik)=g(ain '~~7aik)

for every k-tuple I = (iy, ..., %) of integers from the set {1, ..., n},
then f=g.
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Note that there is no requirement here that the integers ¢;, ..., ix be
distinct or arranged in any particular order.

Proof. Given an arbitrary k-tuple (v1, ..., v¢) of vectors of V, let us
express each v; in terms of the given basis, writing

n
Vi = E Cija;.
j=1 .

Then we compute

n
f(vlv ---’vk)= Z Cij, f(ajnv% --"vk)

Ji=1

n n

= Z Z cljl CQJ', f(ajl,aj,,va, ey Vk),

j1=1 ja=1

and so on. Eventually we obtain the equation

i, vi) = Y erjy oy ckyy flagy, -5 85)-

1<51, ., JuS<n

The same computation holds for g. It follows that f and g agree on all
k-tuples of vectors if they agree on all k-tuples of basis elements. [J

Just as a linear transformation from V to W can be defined by specifying
its values arbitrarily on basis elements for V', a k-tensor on V can be defined
by specifying its values arbitrarily on k-tuples of basis elements. That fact is
a consequence of the next theorem.

Theorem 26.3. Let V be a vector space with basis a;, ..., a,. Let
I = (%, ..., 1) be a k-tuple of integers from the set {1, ..., n}. There is
a unique k-tensor ¢y on V such that, for every k-tuple J = (J1, ..., Jk)
from the set {1, ..., n},

0 if I#J,

(*) ¢,(a,.,,---,a,~k)={1 if I=1J.

The tensors ¢; form a basis for L¥(V).
The tensors ¢; are called the elementary k-tensors on V corresponding

to the basis aj, ..., a, for V. Since they form a basis for £¥*(V) and since
there are n¥ distinct k-tuples from the set {1, ..., n}, the space £*(V') must
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have dimension n*. When k = 1, the basis for V* formed by the elementary
tensors @y, ..., @n is called the basis for V* dual to the given basis for V.

Proof. Uniqueness follows from the preceding lemma. We prove exis-
tence as follows: First, consider the case k = 1. We know that we can deter-
mine a linear transformation ¢; : V — R by specifying its values arbitrarily
on basis elements. So we can define ¢); by the equation

0 if t1#7,
ilay) = . . .
¢i(a;) { 1 if 1=7.
These then are the desired 1-tensors. In the case k > 1, we define ¢; by the
equation

dr(viy. .. Vi) = [0, (v1)] - [Pi(v2)] - - [ @i (Vi)

It follows, from the facts that (1) each ¢; is linear and (2) multiplication is
distributive, that ¢ is multilinear. One checks readily that it has the required
value on (aj,,-- -, aj,).

We show that the tensors ¢; form a basis for £¥(V). Given a k-tensor f
on V, we show that it can be written uniquely as a linear combination of the
tensors ¢;. For each k-tuple I = (i1, ..., ix), let dy be the scalar defined by
the equation

dr = f(ai,,...,ai,).

Then consider the k-tensor
g= Z dJ¢J,
J

where the summation extends over all k-tuples J of integers from the set
{1, ..., n}. The value of g on the k-tuple (a,, ..., a;,) equals dy, by (%),
and the value of f on this k-tuple equals the same thing by definition. Then
the preceding lemma implies that f = ¢g. Uniqueness of this representation
of f follows from the preceding lemma. O

It follows from this theorem that given scalars dj for all I, there is exactly
one k-tensor f such that f(a;,, ..., a;,) = dj for all I. Thus a k-tensor may
be defined by specifying its values arbitrarily on k-tuples of basis elements.
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EXAMPLE 1. Consider the case V = R™. Let e;, ..., e, be the usual basis
for R"; let @1, ..., @n be the dual basis for £L(V). Then if x has components
L1, ..., &n, we have

¢i(x) = ¢(z101 + - - + Tpen) = 4.
Thus ¢; : R® — R equals projection onto the #*" coordinate.

More generally, given I = (i1, ..., ix), the elementary tensor ¢ satisfies
the equation

dr(xay ..., Xk) = @iy (X1) -+ i, (Xk).

Let us write X = [x; --- xx], and let z;; denote the entry of X in row 7 and

column j. Then x; is the vector having components 15, ..., £n;. In this
notation,

Gr(xa, ..., Xp) = Tij1 Tiz2 - Tipk.
Thus ¢; is just a monomialin the components of the vectors x1, ..., X&; and

the general k-tensor on R” is a linear combination of such monomials.
It follows that the general 1-tensor on R™ is a function of the form

fx)=dizi+---+ dnyn,

for some scalars d;. The general 2-tensor on R” has the form

g(x,y) =Y di;ziy;,

Hi=1

for some scalars d;;. And so on.

The tensor product

Now we introduce a product operation into the set of all tensors on V.

The product of a k-tensor and an £-tensor will be a k + £ tensor.

Definition. Let f be a k-tensor on V and let g be an ¢-tensor on V.

We define a k + £ tensor f ® g on V by the equation

(f®g)(vla ceey Vigt) = f(vl’ ces vk) 'g(vk-f-l’ ceey vk+l)‘

It is easy to check that the function f® g is multilinear; it is called the tensor
product of f and g.

We list some of the properties of this product operation:

223
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Theorem 26.4. Let f,g,h be tensors on V. Then the following
properties hold:

(1) (Associativity). f® (g h)=(f®g)®h.
(2) (Homogeneity). (cf/)®g=c(f®g)=f®(cg).
(3) (Distributivity). Suppose f and g have the same order. Then:

(f+9)@h=f@h+gh,
heo(f+9)=hof+h®g.

(4) Given a basis aj, ..., a, for V, the corresponding elementary
tensors ¢; satisfy the equation

1=, ¢, ® - @i,
where I = (iy, ..., ).
Note that no parentheses are needed in the expression for ¢; given in (4),

since @ is associative. Note also that nothing is said here about commutativ-
ity. The reason is obvious; it almost never holds.

Proof. The proofs are straightforward. Associativity is proved, for in-
stance, by noting that (if f, g, h have orders k, £, m, respectively)

(fe(g®h)) (viy .., VErerm)
= f(viy ooy VE) 9(Vit1s -y Viat) - A(Viget1y o5 Vidtem)

The value of (f ® g) ® h on the given tuple is the same. O

The action of a linear transformation

Finally, we examine how tensors behave with respect to linear transfor-
mation of the underlying vector spaces.

Definition. Let T : V — W be a linear transformation. We define the
dual transformation

T* . CE(W) — L¥(V),

(which goes in the opposite direction) as follows: If f is in £¥(W), and if
Vi, ..., Vi are vectors in V, then

(T N1y ooy vi) = F(T(1),s .., T(ve)).
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The transformation T™ is the composite of the transformation T'x - - - x T
and the transformation f, as indicated in the following diagram:

Tx.-..xT
vk Wk

f

T f
R
It is immediate from the definition that T f is multilinear, since T is linear
and f is multilinear. It is also true that 7™ itself is linear, as a map of
tensors, as we now show.

Theorem 26.5. LetT :V — W be a linear transformation; let
T . L¥(W) — LE (V)

be the dual transformation. Then:
(1) T* s linear.
QT (feg=T"foT"y.
B) If S : W — X is a linear transformation, then (SoT)' f =
T(S*f).

Proof. The proofs are straightforward. One verifies (1), for instance, as
follows:

(T*(af +59)) (Vi -, vi) = (6] +bg) (T(1), -, T(vi))
= af(T(vl), ey T(Vk)) + bg(T(Vl), ceey T(Vk))
=aT* f(viy ..., v&)+ T g(v1, ..., Vi),
whence T*(af +bg) =aT* f+bT*g. O

The following diagrams illustrate property (3):

LEW)

N TN

LE(V) LE(X)
SoT (ST
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EXERCISES

1.

(a) Show that if f,g: V* — R are multilinear, so is af + bg.
(b) Check that £*(V) satisfies the axioms of a vector space.

. (a) Show that if f and g are multilinear, so is f ® g.

(b) Check the basic properties of the tensor product (Theorem 26.4).

. Verify (2) and (3) of Theorem 26.5.

4. Determine which of the following are tensors on R*, and express those

that are in terms of the elementary tensors on R*:
f(x,y) =3z1y2 + 523,
g(x’Y) =Z1Yy2 + T2y + 1,

h(x,y) = z1y1 — T229s.

. Repeat Exercise 4 for the functions

f(x,y,2) =321%223 — T3Y1 24,
g(X,y,2,u,v) = 5T3Y223Us V4,

h(x) Y, Z) =T1Y224 + 2T 23.

. Let f and g be the following tensors on R*:

f(x,y,2) =221Y222 — T2Yy321,

g=0¢21—5¢31.
(a) Express f ® g as a linear combination of elementary 5-tensors.

(b) Express (f ® g) (x,y,2,u,v) as a function.

. Show that the four properties stated in Theorem 26.4 characterize the

tensor product uniquely, for finite-dimensional spaces V.

. Let f be a 1-tensor on R”; then f(y) = A-y for some matrix A of size 1

by n. T : R™ — R" is the linear transformation T(x) = B - x, what is
the matrix of the 1-tensor T* f on R™?

§27. ALTERNATING TENSORS

In this section we introduce the particular kind of tensors with which we shall
be concerned—the alternating tensors—and derive some of their properties.
In order to do this, we need some basic facts about permutations.
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Permutations

Definition. Let & > 2. A permutation of the set of integers {1, ..., k}
is a one-to-one function ¢ mapping this set onto itself. We denote the set of
all such permutations by Si. If 0 and 7T are elements of Sy, so are 0 o T and
o~ 1. The set Si thus forms a group, called the symmetric group (or the
permutation group) on the set {1, ..., k}. There are k! elements in this

group.

Definition. Given 1 < ¢ < k, let e; be the element of S; defined by
setting €;(7) = 7 for j # 4,1+ 1; and

ei(t)=i+1 and e(z1+1)=1.

We call ¢; an elementary permutation. Note that e;oe; equals the identity
permutation, so that e; is its own inverse.

Lemma 27.1. Ifo € Sk, then o equals a composite of elementary
permutations.

Proof. Given 0 < @ < k, we say that o fizes the first ¢ integers if
o(j)=jfor1 <j <1t Ifi=0,then 0 need not fix any integers at all.
If © = k, then o fixes all the integers 1, ..., k, so that ¢ is the identity
permutation. In this case the theorem holds, since the identity permutation
equals ¢; o ¢; for any j.

We show that if o fixes the first ¢—1 integers (where 0 < 7 < k), then o can
be written as the composite ¢ = T o o’, where 7 is a composite of elementary
permutations and ¢’ fixes the first ¢ integers. The theorem then follows by
induction.

The proof is easy. Since o fixes the integers 1, ..., ¢ — 1, and since o is
one-to-one, the value of & on 7 must be a number different from 1, ..., 71— 1.
If o(?) = ¢, then we set 0/ = ¢ and 7 equal to the identity permutation, and

our result holds. If o(z) = £ > ¢, we set
o' =¢€o0---0€_100.

Then o’ fixes the integers 1, ..., i — 1 because o fixes these integers and so
do €, ..., €,—1. And ¢’ also fixes ¢, since o(¢) = £ and

e‘.(. .. (el_l(f)) .. ) =1.
We can rewrite the equation defining ¢’ in the form
€—10---0e;00 =0,

thus our result holds. O
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Definition. Let o € Si. Consider the set of all pairs of integers %,j
from the set {1, ..., k} for which ¢ < j and o(t) > o(j). Each such pair is
called an inversion in . We define the sign of o to be the number —1 if the
number of inversions in ¢ is odd, and to be the number +1 if the number of
inversions in o is even. We call & an odd or an even permutation according
as the sign of o equals —1 or +1, respectively. Denote the sign of o by sgn o.

Lemma 27.2. Leto,7€ S;.
(a) If o equals a composite of m elementary permutations, then
sgn o = (—1)".

(b) sgn(og o T) = (sgn o) - (sgn 7).
1

(c) sgn o=' =sgn o.
(d) If p # q, and if T is the permutation that exchanges p and q and
leaves all other integers fized, then sgn 7 = —1.

Proof. Step 1. We show that for any o,
sgn(o o ;) = —sgn o.
Given o, let us write down the values of o in order as follows:

(*) (0(1),0(2), ..., a(8),0(t+1), ..., o(k)).

Let 7 = ooey; then the corresponding sequence for T is the k-tuple of numbers

(T(l),T(2), R T(e)’T(e+ 1)’ R T(k))
(%)
= (a(1),0(2), ..., a(£ + 1),0(L), ..., o(k)).

The number of inversions in o and T, respectively, are the number of pairs of
integers that appear in the sequences (*) and (%), respectively, in the reverse
of their natural order. We compare inversions in these two sequences. Let
P # q; we compare the positions of o(p) and o(g) in these two sequences.
If neither p nor ¢ equals £ or £ + 1, then o(p) and o(q) appear in the same
slots in both sequences, so they constitute an inversion in one sequence if and
only if they constitute an inversion in the other. Now consider the case where
one, say p, equals either £ or £ + 1, and the other g is different from both ¢
and £ 4+ 1. Then o(q) appears in the same slot in both sequences, but o(p)
appears in the two sequences in adjacent slots. Nevertheless, it is still true
that o(p) and o(q) constitute an inversion in one sequence if and only if they
constitute an inversion in the other.

So far the number of inversions in the two sequences are the same. But
now we note that if o(£) and (£ + 1) form an inversion in the first se-
quence, they do not form an inversion in the second; and conversely. Hence
sequence (+*) has either one more inversion, or one fewer inversion, than (*).
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Step 2. We prove the theorem. The identity permutation has sign +1;
and composing it successively with m elementary permutation changes its
sign m times, by Step 1. Thus (a) holds. To prove (b), we write o as
the composite of m elementary permutations, and 7 as the composite of n
elementary permutations. Then o o 7 is the composite of m + n elementary
permutations; and (b) follows from the equation (—1)™*" = (-1)"(-1)".
To check (c), we note that since 07! o ¢ equals the identity permutation,
(sgn o~ )(sgn o) = 1.

To prove (d), one simply counts inversions. Suppose that p < q. We can
write the values of 7 in order as

1,...,p-1[g,p+1,....,p+€-1,[p|,p+L+1,..., k),

where ¢ = p+£. Each of the pairs {q,p+1}, ..., {¢,p+£—1} constitutes an
inversion in this sequence, and so does each of the pairs {p+ 1,p}. ..., {p+
£—1,p}. Finally, {q,p} is an inversion as well. Thus T has 2 — 1 inversions,
soitisodd. O

Alternating tensors

Definition. Let f be an arbitrary k-tensor on V. If ¢ is a permutation
of {1, ..., k}, we define f? by the equation

Fovas oy Vi) = f(Voq)ys -y Va(r))-

Because f is linear in each of its variables, so is f7; thus f? is a k-tensor
on V. The tensor f is said to be symmetric if f¢ = f for each elemen-
tary permutation e, and it is said to be alternating if f¢ = — f for every
elementary permutation e.

Said differently, f is symmetric if
F(Viy oo Vigts Viy cooy Vi) = f(V1, oo oy Viy Vigly -0y VE)
for all 7; and f is alternating if
JOviy ooy Vig1, Vig o Vi) = = f (Ve ooy Vig Vigly ooy Vi)

While symmetric tensors are important in mathematics, we shall not be con-
cerned with them here. We shall be primarily interested in alternating tensors.

Definition. If V' is a vector space, we denote the set of alternating k-
tensors on V' by A¥(V). It is easy to check that the sum of two alternating
tensors is alternating, and that so is a scalar multiple of an alternating tensor.
Then A¥(V) is a linear subspace of the space £*(V) of all k-tensors on V.
The condition that a 1-tensor be alternating is vacuous. Therefore we make
the convention that A (V) = LY(V).
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EXAMPLE 1. The elementary tensors of order k > 1 are not alternating, but
certain linear combinations of them are alternating. For instance, the tensor

f=0i;— ¢

is alternating, as you can check. Indeed, if V = R™ and we use the usual basis
for R™ and corresponding dual basis ¢, the function f satisfies the equation

;i Y
f(x,y) = ziy; — ;9 = det .
T Yi
Here it is obvious that f(y,x) = —f(x,y). Similarly, the function
Ty Y Zi
g(xa Y, Z) = det .’B_, yj Z]'
Ty Yk Zk

is an alternating 3-tensor on R"; one can also write g in the form

g= ¢€,j,k + ¢j,k,i + ¢k,i.j - ¢j,i,k - ¢i,k,j - ¢k,j,|'-

This example suggests that alternating tensors and the determinant func-
tion are intimately related. This is in fact the case, as we shall see.

We now study the space .A*(V); in particular, we find a basis for it. Let
us begin with a lemma:

Lemma 27.3. Let f be a k-tensor on V; let o,7 € Sk.

(a) The transformation f — f° is a linear transformation of L¥(V')
to L*(V). It has the property that for all o,T,

(fd)‘l' —_ f‘rOU.

(b) The tensor f is alternating if and only if f* = (sgn o) f for all 0.
If f is alternating and if v, = v, with p#q, then f(vi, ..., vi)=0.

Proof. (a) The linearity property is straightforward; it states simply
that (af + bg)° = af? + bg°. To complete the proof of (a), we compute

() (vis oo Vi) = fO(Vr)s - s V()
= f%(wi1, ..., Wi), where w;=v.),
= f(Wo(1)y -+ s Wo(k))
= f(v‘r(a(l))’ cees vr(a(k)))

= f”’"(vl, ey Vk).
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(b) Given an arbitrary permutation o, let us write it as the composite
0 =0;0020 - 00y,,
where each 0; is an elementary permutation. Then
£ = forooom
=((---(fm)--))™ by (a),
= (=1)"f because fis alternating,
= (sgn o) f.

Now suppose v, = v, for p # ¢. Let 7 be the permutation that ex-
changes p and ¢q. Since v, = v,,

JT(vis oy vi) = f(ve,y -0y vie).
On the other hand,

FTvis ooy Vi) = = f(viy ey Vi)

since sgn 7 = —1. It follows that f(vy, ..., vi) = 0. a

We now obtain a basis for the space A*¥(V'). There is nothing to be done
in the case k = 1, since A(V) = LY(V). And in the case where k > n,
the space A¥(V) is trivial. For any k-tensor [ is uniquely determined by
its values on k-tuples of basis elements. If k& > n, some basis element must
appear in the k-tuple more than once, whence if f is alternating, the value
of f on the k-tuple must be zero.

Finally, we consider the case 1 < k < n. We show first that an alternating
tensor f is entirely determined by its values on k-tuples of basis elements
whose indices are in ascending order. Then we show that the value of f
on such k-tuples may be specified arbitrarily.

Lemma 27.4. Leta,, ..., a, be a basis for V. If f, g are alternat-
ing k-tensors on V, and if

f(ail’ ""aik):g(ah’ "',aik)

Jor every ascending k-tuple of integers I = (iy, ..., i) from the set
{1,...,n}, then f = g.

Proof. In view of Lemma 26.2, it suffices to prove that f and g have
the same values on an arbitrary k-tuple (aj,, ..., a;,) of basis elements. Let

J =1y -5 Jr)-
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If two of the indices, say, jp, and j,, are the same, then the values of f
and ¢ on this tuple are zero, by the preceding lemma. If all the indices
are distinct, let o be the permutation of {1, ..., k} such that the k-tuple
I =(Jsq)s -+ Jo(r)) is ascending. Then

fai,,...,a,) = f°(aj,, ..., aj,) by definition of 7,
= (sgn o)f(aj,, ..., aj,) because fis alternating.

A similar equation holds for g. Since f and g agree on the k-tuple
(ai,, ..., ai,), they agree on the k-tuple (aj,, ..., a;,).

Theorem 27.5. Let V be a vector space with basis ay, ..., a,. Let
I = (i1, ..., %) be an ascending k-tuple from the set {1, ..., n}. There
is a unique alternating k-tensor yr on V such that for every ascending
k-tuple J = (41, ..., jx) from the set {1, ..., n},
0 if I#J,

¢,(a,-,,...,a,.k)={1 if I=J.

The tensors v; form a basis for A¥(V). The tensor vy in fact satisfies

the formula
Pr=_ (sgn 0)(¢r)’,

4

where the summation extends over all o € Si.

The tensors 1y are called the elementary alternating k-tensors on V
corresponding to the basis ay, ..., a, for V.

Proof. Uniqueness follows from the preceding lemma. To prove exis-
tence, we define 17 by the formula given in the theorem, and show that ¥y

satisfies the requirements of the theorem.
First, we show 1; is alternating. If 7 € S, we compute

(¥r)” =) (sgn 0) ((¢1)°)" by linearity,
= (sgn 0) (¢1)™*°
= (sgn 7) »_ (sgn(700)) (¢1)"°

= (sgn 7)Yr;
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the last equation follows from the fact that 7 o o ranges over S; as o does.
We show 1)y has the desired values. Given J, we have

Yr(aj,, ..., a,)= Z(sgn a‘)¢1(aj,(l), ey i)
o

Now at most one term of this summation can be non-zero, namely the term
corresponding to the permutation o for which I = (Jo(1)s -+ Joqr)y)- Since
both I and J are ascending, this occurs only if I = J and o is the identity
permutation, in which case the value is 1. If I # J, then all terms vanish.

Now we show the 1; form a basis for A*(V). Let f be an alternating k-
tensor on V. We show that f can be written uniquely as a linear combination
of the tensors ;.

Given f, for each ascending k-tuple I = (if, ..., i) from the set
{1, ..., n}, let d; be the scalar

d,:f(a,-l, ...,a,-,‘).

Then consider the alternating k-tensor

9= dsyy,
71

where the notation [J] indicates that the summation extends over all ascend-
ing k-tuples from {1, ..., n}. If I is an ascending k-tuple, the the value of g
on the k-tuple (a;,, ..., a;,) equals dr; and the value of f on this k-tuple is
the same. Hence f = g. Uniqueness of this representation of f follows from
the preceding lemma. 0[O

This theorem shows that once a basis a,, ..., a, for V has been chosen,
an arbitrary alternating k-tensor f can be written uniquely in the form

F=>dsys.
V]

The numbers d; are called components of f relative to the basis {1;}.

What is the dimension of the vector space A*(V)? If k = 1, then A (V)
has dimension n, of course. In general, given £ > 1 and given any subset of
{1, ..., n} having k elements, there is exactly one corresponding ascending
k-tuple, and hence one corresponding elementary alternating k-tensor. Thus
the number of basis elements for A¥(V') equals the number of combinations
of n objects, taken k at a time. This number is the binomial coefficient

(+) = w=er
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The preceding theorem gives one formula for the elementary alternating
tensor ;. There is an alternative formula that expresses 1y directly in terms
of the standard basis elements for the larger space L¥(V). It is given in
Exercise 5.

Finally, we note that alternating tensors behave properly with respect to
a linear transformation of their underlying vector spaces. The proof is left as
an exercise.

Theorem 27.6. Let T : V — W be a linear transformation.
If f is an alternating tensor on W, then T* f is an alternating tensor
onV. 0O

Determinants

We now (at long last!) construct the determinant function for matrices
of size greater than 3 by 3.

Definition. Let ey, ..., e, be the usual basis for R®; let ¢y, ..., ¢n
denote the dual basis for £L!(R"). The space A"(R") of alternating n-tensors
on R™ has dimension 1; the unique elementary alternating n-tensor on R” is
the tensor 9y, .. ,. If X = [x; -+ xp] is an n by n matrix, we define the
determinant of X by the equation

det X = 'ﬁbl,...,n(xl, ceey xn)'

We show this function satisfies the axioms for the determinant function
given in §2. For convenience, let us for the moment let g denote the function

9(X) = pi(x1 .5 Xn),

where I = (1, ..., n). The function g is multilinear and alternating as a
function of the columns of X, because 1) is an alternating tensor. Therefore
the function f defined by the equation f(A) = g(A*) is multilinear and
alternating as a function of the rows of the matrix A. Furthermore,

f(Iﬂ) = g(Iﬂ) = ¢1(el, cey en) =1.

Hence the function f satisfies the axioms for the determinant function. In
particular, it follows from Theorem 2.11 that f(A) = f(A*). Then f(A) =
F(A*) = g((A¥)¥r) = g(A), so that g also satisfies the axioms for the deter-
minant function, as desired.

The formula for 1; given in Theorem 27.5 gives rise to a formula for the
determinant function. If I = (1, ..., n), we have

det X =Y (sgn 0)b1(Xo(1)s -+ > Xo(n))

= Z(Sgn O)T1,001) * T2,0(2) " " Zn,o(n)
ag
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as you can check. This formula is sometimes used as the definition of the
determinant function.

We can now obtain a formula for expressing 1y directly as a function of
k-tuples of vectors of R™. It is the following:

Theorem 27.7.  Let 1; be an elementary alternating tensor on R®
corresponding to the usual basis for R*, where I = (i1, ..., i;). Given
vectors xi, ..., x¢ of R, let X be the matriz X =[x; --- x;]. Then

Yvr(X1y ..., xx) = det X7,

where X denotes the matriz whose successive rows are rows ty,.. .,

of X.
Proof. We compute

Pr(xX1, ..oy Xe) = D (580 O)Br(Xo(1)s - - - 5 Xo(r))

= Z (s8N 0)Zi,,0(1) * Tigo(2) " " Tix,o(k)-
o

This is just the formula for det X;. O

EXAMPLE 2. Consider the space A%(R*). The elementary alternating 3-
tensors on R*, corresponding to the usual basis for R*, are the functions

Ti Yi T
wi,J,k (x: Y, z) = det i Yi %)
Tk Yk 2k

where (2, j, k) equals (1,2,3) or (1,2,4) or (1,3,4) or (2,3,4). The general ele-
ment of A%(R*) is a linear combination of these four functions.

A remark on notation. There is in the subject of multilinear algebra a
standard construction called the exterior product operation. It assigns to any
vector space W a certain quotient of the “k-fold tensor product” of W; this
quotient is denoted A¥(W) and is called the “k-fold exterior product” of W.
(See [Gr], [N].) If V' is a finite-dimensional vector space, then the exterior
product operation, when applied to the dual space V* = £L1(V), gives a space
A¥(V'*) that is isomorphic to the space of alternating k-tensors on V, in a
natural way. For this reason, it is fairly common among mathematicians to
abuse notation and denote the space of alternating k-tensors on V by A¥(V'*).
(See [B-G] and [G-P], for example.)

Unfortunately, others denote the space of alternating k-tensors on V by
the symbol A*(V) rather than by A¥(V*). (See [A-M-R], [B], [D].) Other
notations are also used. (See [F], [S].) Because of this notational confusion,
we have settled on the neutral notation .A¥(V) for use in this book.

235



236 Differential Forms Chapter 6
EXERCISES
1. Which of the following are alternating tensors in R*?
f(x,¥) = z1y2 — T2t + T3
g(x,y) = T1Yys — Tay2-
h(x,y) = (21)°(y2)° — (22)* (1)’
2. Let o0 € S5 be the permutation such that
(0(1),0(2),0(3),0(4),0(5)) = (3,1,4,5,2).

Use the procedure given in the proof of Lemma 27.1 to write 0 as a
composite of elementary permutations.

3. Let ¢; be an elementary k-tensor on V corresponding to the basis

ay,...,an for V. If j1, ..., jx is an arbitrary k-tuple of integers from
the set {1, ..., n}, what is the value of
Yr(a,, .-, a5) 7

4. Show that if T : V — W is a linear transformation and if f € A*(W),
then T*f € A*(V).

5. Show that
Yr=Y (sgn 0)ér,,

where if I = (i1, ..., i), we let Iy = (ig(), .- -, io(x)). [Hint: Show
first that (¢z, ) = ¢]]

§28. THE WEDGE PRODUCT

Just as we did for general tensors, we seek to define a product operation in the
set of alternating tensors. The product f® g is almost never alternating, even
if f and g are alternating. So something else is needed. The actual definition
of the product is not very important; what is important are the properties it
satisfies. They are stated in the following theorem:
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Theorem 28.1.  Let V be a vector space. There is an operation
that assigns, to each f € A*(V) and each g € AYV), an element fAg €
A¥Y(V), such that the following properties hold:

(1) (Associativity). f A(gAh) = (f Ag)Ah.
(2) (Homogeneity). (cf)Ag=c(fAg) = fA(cg).
(3) (Distributivity). If f and g have the same order,

(f+9)Ah=FfAh+gAh,
AhA(f+g)=hAf+hAg.

(4) (Anticommutativity). If f and g have orders k and ¢, respec-

tively, then
gAf=(-1)¥fng.

(5) Given a basis a,, ..., a, for V, let ¢; denote the dual basis for
V*, and let ¢; denote the corresponding elementary alternating
tensors. If I = (i, ..., 1) is an ascending k-tuple of integers
from the set {1, ..., n}, then

Yr=¢i, Adis A~ A,

These five properties characterize the product A uniquely for finite-
dimensional spaces V. Furthermore, it has the following additional
property:
6) If T : V — W is a linear transformation, and if f and g are
alternating tensors on W, then

T"(frng)=T"fAT"g.

The tensor f A g is called the wedge product of f and g. Note that
property (4) implies that for an alternating tensor f of odd order, fA f = 0.

Proof. Step 1. Let F be a k-tensor on W (not necessarily alternat-
ing). For purposes of this proof, it is convenient to define a transformation

A : L¥(V) — L¥(V) by the formula

AF = Z(sgn o) F?,

4

where the summation extends over all ¢ € Si. (Sometimes a factor of 1/k!
is included in this formula, but that is not necessary for our purposes.) Note
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that in this notation, the definition of the elementary alternating tensors can
be written as

Yr = A¢r.
The transformation A has the following properties:
(i) A is linear.
(ii) AF is an alternating tensor.

(iii) If F is already alternating, then AF = (k) F.

Let us check these properties. The fact that A is linear comes from the
fact that the map F' — F is linear. The fact that AF' is alternating comes
from the computation

(AF) = Z (sgn o)(F°) by linearity,

4

=) (sgn 0)F™°
=(sgn 7)) _(sgn T 0 O)F"’

= (sgn T)AF.

(This is the same computation we made earlier in showing that t; is alter-
nating.) Finally, if F is already alternating, then F'? = (sgn o) F for all 0.
It follows that
AF = (sgn 0)*F = ()F.
o

Step 2. We now define the product fAg. If f is an alternating k-tensor
on V, and g is an alternating {-tensor on V', we define

A= gr AU ©9).

Then f A g is an alternating tensor of order k + £.

It is not entirely clear why the coefficient 1/k!¢! appears in this formula.
Some such coefficient is in fact necessary if the wedge product is to be asso-
ciative. One way of motivating the particular choice of the coefficient 1/k!€!
is the following: Let us rewrite the definition of f A g in the form

(FADMVL, -0y Vigt) =

1
il > (sgn 0) f(Voays - s Vo) - 9(Vak+1)s - -5 Va(k+0))-
o
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Then let us consider a single term of the summation, say

(sgn o) f(Voiys -5 Vo) - 9(Vo(k+1)s - - -1 Vo(ete)-

A number of other terms of the summation can be obtained from this one
by permuting the vectors Vo(1)s -+ - Vo(k) among themselves, and permuting
the vectors v,(;41), .-y Vo(k+¢) among themselves. Of course, the factor
(sgn o) changes as we carry out these permutations, but because f and g are
alternating, the values of f and ¢ change by being multiplied by the same
sign. Hence all these terms have precisely the same value. There are k!£! such
terms, so it is reasonable to divide the sum by this number to eliminate the
effect of this redundancy.

Step 3. Associativity is the most difficult of the properties to verify, so
we postpone it for the moment. To check homogeneity, we compute

(g =A((cf) ® g)/ke!
= A(c(f ® 9))/k1€! by homogeneity of ®,
=cA(f®g)/k'€! by linearity of A,
=c(fng).

A similar computation verifies the other part of homogeneity. Distributivity
follows similarly from distributivity of ® and linearity of A.

Step 4. We verify anticommutativity. In fact, we prove something
slightly more general: Let F' and G be tensors of orders k and £, respec-
tively (not necessarily alternating). We show that

AF®G)=(-1)*A(G® F).
To begin, let m be the permutation of (1, ..., k + £) such that
(1), ..., 7k +0) =(k+1,k+2,..., k+£,1,2, ..., k).

Then sgn m = (—1)¥¢. (Count inversions!) It is easy to see that (Go F)* =
F® @G, since

(G®F)r(v17 ceey vk+l) ZG(VE-H, seey VE-H) 'F(vla ceey Vk)’
(F®G)(vla ooy VE4e) = F(vls ceey VE) 'G(vk+l, cey Vk+l)'

239



240 Differential Forms Chapter 6

We then compute

AF®G)=) (sgn o)(F®G)’
= Z (sgn 0)((G® F))°
= (sgn m) Z (sgn oo m)(G @ F)°°"

= (sgn TA(G ® F),

since o o m runs over all elements of Si4¢ as o does.

Step 5. Now we verify associativity. The proof requires several steps,
of which the first is this:

Let F' and G be tensors (not necessarily alternating) of orders k and ¢,
respectively, such that AF = 0. Then A(F ® G) = 0.

To prove that this result holds, let us consider one term of the expression

for A(F ® ), say the term

(sgn O)F(Vo(1ys -+ » Vo)) - G(Va(is1)y -+ -5 Vo(k+t))-

Let us group together all the terms in the expression for A(F'®G) that involve
the same last factor as this one. These terms can be written in the form

(sgn o) [D_ (sgn T)F(Vo(r(a))s -+ Yotz - G(Vatk+1)s -5 Va(k4)»

where T ranges over all permutations of {1, ..., k}. Now the expression in
brackets is just

AF(VU(I), vy Va(k)),
which vanishes by hypothesis. Thus the terms in this group cancel one an-

other.
The same argument applies to each group of terms that involve the same

last factor. We conclude that A(F ® G) = 0.

Step 6. Let F be an arbitrary tensor and let & be an alternating tensor
of order m. We show that

1
(AF)Ah = E!A(F@) h).
Let F' have order k. Our desired equation can be written as

k—!ln?A((AF) ®h) = %_!A(p@, h).
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Linearity of A and distributivity of ® show this equation is equivalent to each
of the equations

A{(AF)®h — (k)F @ h} =0,
A{[AF - (k)F]® h} = 0.

In view of Step 5, this equation holds if we can show that
A[AF — (E)F) = 0.

But this follows immediately from property (iii) of the transformation A, since
AF is an alternating tensor of order k.

Step 7. Let f, g, h be alternating tensors of orders k, £, m respectively.
We show that

Let F = f®g, for convenience. We have
1
f/\ g= WAF
by definition, so that

(ng)Ah:E!%(AF)Ah

=5 e' T A(F @ h) by Step 6,

= ma A g eh).

Step 8. Finally, we verify associativity. Let f+ 9, h be as in Step 7.
Then

(Km)(fAg)Ah=A((f®g)®h) by Step 7,
=A(f®(g®h)) by associativity of ®,
= (-)"4™A((go h)® f) by Step 4,
= (=1)* ™ (i) (g AR)A f by Step 7,
= (k¥!m!)f A(gAh) by anticommutativity.

Step 9. We verify property (5). In fact, we prove something slightly
more general. We show that for any collection fi, ..., fi of 1-tensors,

(¥) Ah®-®fi)=fin-Afi.
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Property (5) is an immediate consequence, since
¢I = A¢] = A(¢iz ®:--® ¢ik)'

Formula (%) is trivial for £ = 1. Supposing it true for k — 1, we prove it
fork. Set F=fi®---® fx—1. Then

A(F® fi) = (1)(AF)A fi by Step 6,
=(fin- A fim1) A S,

by the induction hypothesis.

Step 10. We verify uniqueness; indeed, we show how one can calculate
wedge products, in the case of a finite-dimensional space V, using only prop-
erties (1)—(5). Let ¢; and 11 be as in property (5). Given alternating tensors
f and g, we can write them uniquely in terms of the elementary alternating

tensors as
f = Z b['lﬂ[ and g = Z C]'w_].
{n V]
(Here [ is an ascending k-tuple, and J is an ascending {-tuple, from the set
{1, ..., n}.) Distributivity and homogeneity imply that

f/\g=z ZbICJ¢IA¢J-
([

Therefore, to compute f A ¢ we need only know how to compute wedge prod-
ucts of the form

¢1A¢J:(¢i1A"'A¢ik)/\(¢j1/\"'/\¢h)‘

For that, we use associativity and the simple rules

GiNG;i=—pj AP and ¢ APi =0,

which follow from anticommutativity. It follows that the product ¥r A 9
equals zero if two indices are the same. Otherwise it equals (sgn ) times the
elementary alternating k + £ tensor g whose index is obtained by rearrang-
ing the indices in the k + £ tuple (I, J) in ascending order, where 7 is the
permutation required to carry out this rearrangement.

Step 11. We complete the proof by verifying property (6). Let T' :
V — W be alinear transformation, and F be an arbitrary tensor on W (not
necessarily alternating). It is easy to verify that T*(F?) = (T*F)?. Since
T* is linear, it then follows that T*(AF) = A(T*F).
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Now let f and g be alternating tensors on W of orders k and £, respec-
tively. We compute

T*(f A9) = 5T (A(f ® 9))
=GR AT 09)
1 A((T*f)®(T*g)) by Theorem 26.5,

= R
=(T"f)A(T*g). O

With this theorem, we complete our study of multilinear algebra. There
is, of course, much more to the subject (see [N] or [Gt], for example), but this
is all we shall need. We shall in fact need only alternating tensors and their
properties, as discussed in this section and the preceding one.

We remark that in some texts, such as [G-P], a slightly different definition
of the wedge product is used; the coefficient 1/(k+£)! appears in the definition
in place of the coefficient 1/k!¢!. This choice of coefficient also leads to an
operation that is associative, as you can check. In fact, all the properties
listed in Theorem 28.1 remain unchanged except for (5), which is altered by
the insertion of a factor of k! on the right side of the equation for Pr.

EXERCISES
1. Let x,y,z € R®, Let
F(x,y,x) =222y22) + £1Ys24,
G(x,y) = z1ys + 23y,

h(w) = w; — 2ws.

(a) Write AF and AG in terms of elementary alternating tensors. [Hint:

Write F' and G in terms of elementary tensors and use Step 9 of the
preceding proof to compute A¢;.]

(b) Express (AF) A h in terms of elementary alternating tensors.
(c) Express (AF)(x,y,z) as a function.
2. If G is symmetric, show that AG = 0. Does the converse hold?

3. Show that if fi, ..., fi are alternating tensors of orders ¢;, cooy i, TE-
spectively, then

zl..—,?,Tk,A(f1®---®fk)=f1A...,\fk'
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4. Let x1, ..., Xx be vectors in R™; let X be the matrix X = [x1 --- X].
If I = (i1, ..., ix) is an arbitrary k-tuple from the set {1, ..., n}, show
that

Gi, Ao Adi (X1, ...y Xi) =det X,

5. Verify that T*(F°) = (T*F)°.
6. Let T : R™ — R™ be the linear transformation T'(x) = B - x.

(a) If 11 is an elementary alternating k-tensor on R™, then T'*t1 has the
form

T*Yr = Z caths,
1

where the 1); are the elementary alternating k-tensors on R™. What
are the coefficients ¢s?

) If f= Z[Il drir is an alternating k-tensor on R”, express T*f in
terms of the elementary alternating k-tensors on R™.

§29. TANGENT VECTORS AND DIFFERENTIAL FORMS

In calculus, one studies vector algebra in R3—vector addition, dot products,
cross products, and the like. Scalar and vector fields are introduced; and
certain operators on scalar and vector fields are defined, namely, the operators

grad f =V, curl F=V x F, and divG=V.G.

These operators are crucial in the formulation of the basic theorems of the
vector integral calculus.

Analogously, we have in this chapter studied tensor algebra in R"—tensor
addition, alternating tensors, wedge products, and the like. Now we introduce
the concept of a tensor field; more specifically, that of an alternating tensor
field, which is called a “differential form.” In the succeeding section, we shall
introduce a certain operator on differential forms, called the “differential op-
erator” d, which is the analogue of the operators grad, curl, and div. This
operator is crucial in the formulation of the basic theorems concerning inte-
grals of differential forms, which we shall study in the next chapter.

We begin by discussing vector fields in a somewhat more sophisticated
manner than is done in calculus.
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Tangent vectors and vector fields

Definition. Given x € R”, we define a tangent vector to R® at x to
be a pair (x; v), where v € R". The set of all tangent vectors to R® at x
forms a vector space if we define

(xv) + (W) = (x; v + w),
c(x;v) = (x;¢v).
It is called the tangent space to R™ at x, and is denoted 7,(R").

Although both x and v are elements of R® in this definition, they play
different roles. We think of x as a point of the metric space R® and picture it
as a “dot.” We think of v as an element of the vector space R” and picture it
as an “arrow.” We picture (x; v) as an arrow with its initial point at x. The
set 7.(R") is pictured as the set of all arrows with their initial points at x; it
is, of course, just the set x x R".

We do not attempt to form the sum (x;v) + (y;w) if x £ y.

Definition. Let (a,b) be an open interval in R; let 7 : (a,b) — R™ be
amap of class C". We define the velocity vector of v, corresponding to the
parameter value ¢, to be the vector (y(t); Dy(t)).

This vector is pictured as an arrow in R™ with its initial point at the
point p = y(t). See Figure 29.1. This notion of a velocity vector is of course
a reformulation of a familiar notion from calculus. If

7(t) = z(t)er + y(t)es + z(t)es

is a parametrized-curve in R3, then the velocity vector of 7 is defined in
calculus as the vector

@ dz

Jt e+ Ee:;.

d
DAy(t) = d—fel +

@ o

(N

Figure 29.1
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More generally, we make the following definition:

Definition. Let A be open in R* or H*; let & : A — R™ be of class C".
Let x € A, and let p = a(x). We define a linear transformation

a, : Tx(RF) — T,(R")

by the equation
a.(x;v) = (p; Da(x) - v).

It is said to be the transformation induced by the differentiable map a.
Given (x; v), the chain rule implies that the vector a.(x; V) is in fact the

velocity vector of the curve ¥(t) = a(x +tv), corresponding to the parameter
value t = 0. See Figure 29.2.

-—_

Py \
!

BN

o (x; V)

S

Figure 29.2

For later use¢, we note the following formal property of the transforma-
tion a,:

Lemma 29.1. Let A be open in R* or H¥; let o — R™ be of class
Cr. Let B be an open set of R™ or H™ containing a(A); let 3: B — R"
be of class C™. Then

(Boa) = .o
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Proof. This formula is just the chain rule. Let y = a(x) and let z =
B(y). We compute

(B o a)(x;v) = (B(a(x)); D(B o )(x) - v)
= (B(y); DB(y) - Da(x) - v)
= B.(y; Da(x) - v)
= Bu(on(x;v)). O

These maps and their induced transformations are indicated in the fol-
lowing diagrams:

Boa (B o a).
A R*  T.(R*) T.(R™)
a / \ /
B Ty(R™)

Definition. If A is an open set in R", a tangent vector field in A is
a continuous function F': A — R™ x R such that F'(x) € 7,(R"), for each
x € A. Then F has the form F(x) = (x; f(x)), where f: A — R”. If F'is of
class C7, we say that it is a tangent vector field of class C7.

Now we define tangent vectors to manifolds. We shall use these notions
in Chapter 7.

Definition. Let M be a k-manifold of class C” in R™. If p € M, choose
a coordinate patch a : U — V about p, where U is open in R* or H*. Let x
be the point of U such that a(x) = p. The set of all vectors of the form
@.(x;v), where v is a vector in R¥, is called the tangent space to M at p,
and is denoted T,(M). Said differently,

To(M) = a. (T(RY)).
It is not hard to show that T,(M) is a linear subspace of 7T,(R") that is

well-defined, independent of the choice of a. Because R* is spanned by the
vectors ey, ..., ek, the space Tp( M) is spanned by the vectors

(p; Da(x) - ej) = (p; 0/ 0z;),
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a
/—-“
] M
Figure 29.3
for j =1, ..., k. Since Do has rank k, these vectors are independent; hence

they form a basis for 7,(M). Typical cases are pictured in Figure 29.3.

We denote the union of the tangent spaces T,(M), for p € M, by T(M);
and we call it the tangent bundle of M. A tangent vector field to M
is a continuous function F': M — T (M) such that F(p) € Tp,(M) for each
peM.

Tensor fields

Definition. Let A be an open set in R®. A k-tensor field in A is a
function w assigning, to each x € A, a k-tensor defined on the vector space
Tx(R™). That is,

w(x) € L* (Tx(R™))

for each x. Thus w(x) is a function mapping k-tuples of tangent vectors to
R” at x into R; as such, its value on a given k-tuple can be written in the

form

W(x)((x;v1), -5 (X5 V).
We require this function to be continuous as a function of (x,vy, ..., v); if
it is of class C", we say that w is a tensor field of class C". If it happens that
w(x) is an alternating k-tensor for each x, then w is called a differential
form (or simply, a form) of order k, on A.
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More generally, if M is an m-manifold in R™, then we define a k-tensor
field on M to be a function w assigning to each p € M an element of
L*(To(M)). If in fact w(p) is alternating for each p, then w is called a
differential form on M.

If w is a tensor field defined on an open set of R” containing M, then w
of course restricts to a tensor field defined on M, since every tangent vector
to M is also a tangent vector to R”. Conversely, any tensor field on M can
be extended to a tensor field defined on an open set of R® containing M;
the proof, however, is decidedly non-trivial. For simplicity, we shall restrict
ourselves in this book to tensor fields that are defined on open sets of R™.

Definition. Let ey, ..., e, be the usual basis for R”. Then (x;e,), ...,
(x;e,) is called the usual basis for 7(R"). We define a 1-form ¢; on R” by
the equation

0 if ¢#7,

¢i(X)(x;ej)={1 if 1=j.

The forms (7)1, ceey 8,, are called the elementary 1-forms on R”. Similarly,
given an ascending k-tuple I = (¢, ..., i) from the set {1, ..., n}, we define
a k-form % on R™ by the equation

Yr(x) = $i, () A -+ A i, ().
The forms ;LI are called the elementary k-forms on R”.

Note that for each x, the 1-tensors :f;l(x), ceny (7),, (x) constitute the basis

for £1(7x(R")) dual to the usual basis for 7(R"), and the k-tensor 9y(x) is
the corresponding elementary alternating tensor on 7y(R™).

The fact that ¢; and ¥ are of class C™ follows at once from the equations
Pi(x)(x; v) = vy,
1~ﬁ1(x)((x; Vi) ooy (X5vy)) = det X,

where X is the matrix X = [v; - -+ vi].
If wis a k-form defined on an open set A of R”, then the k-tensor w(x)
can be written uniquely in the form

w(x) =Y br(x)Pr(x),
[7)

for some scalar functions by(x). These functions are called the components
of w relative to the standard elementary forms in R™.
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Lemma 29.2. Let w be a k-form on the open set A of R*. Then
w is of class C* if and only if its component functions b; are of class
CT on A.

Proof. Given w, let us express it in terms of elementary forms by the

equation N
W = Z bﬂ[J[.
(1

The functions 1¥; are of class C®. Therefore, if the functions b; are of
class C*, so is the function w. Conversely, if w is of class C* as a func-
tion of (x,Vv, ..., Vi), then in particular, given an ascending k-tuple J =
(J1y .-, Jx) from the set {1, ..., n}, the function

wx)((x;e5,), -+ (%5€5,))

is of class C* as a function of x. But this function equals b;(x). O

Lemma 29.3. Let w and n be k-forms, and let § be an {-form, on
the open set A of R*. Ifw and 1 and 8 are of class C*, so are aw + by
andwAb.

Proof. 1t is immediate that aw + b7 is of class C", since it is a linear
combination of C" functions. To show that w A @ is of class C", one could
use the formula for the wedge product given in the proof of Theorem 28.1.
Alternatively, one can use the preceding theorem: Let us write

W= Zb{';[)[ and 0= Z 61171_],
(n 7]

where I and J are ascending k- and f-tuples, respectively, from the set

{1, ..., n}. Then _
wAl = Z Z b[C]'l/J[/\’l/)J.
(vl

To write (w A 0)(x) in terms of elementary alternating tensors, we drop all
terms with repeated indices, rewrite the remaining terms with indices in as-
cending order, and collect like terms. We see thus that each component of
w A @ is the sum (with signs £1) of functions of the form byc;. Thus the
component functions of w A 8 are of class C". O

Differential forms of order zero

In what follows, we shall need to deal not only with tensor fields in R”, but
with scalar fields as well. It is convenient to treat scalar fields as differential
forms of order 0.
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Definition. If A is open in R*, and if f: A — R is a map of class C",
then f is called a scalar field in A. We also call f a differential form of

order 0.

The sum of two such functions in another such, and so is the product by
a scalar. We define the wedge product of two 0-forms f and g by the rule
fAg=f-g, which is just the usual product of real-valued functions. More
generally, we define the wedge product of the 0-form f and the k-form w by
the rule

WA f)x) = (f Aw)(x) = f(x) - w(x);

this is just the usual product of the tensor w(x) and the scalar f(x).

Note that all the formal algebraic properties of the wedge product hold.
Associativity, homogeneity, and distributivity are immediate; and anticom-
mutativity holds because scalar fields are forms of order 0:

fAg=(-1)%Af and fAw=(-1)°wAf.

Convention. Henceforth, we shall use Roman letters such as f, g, h
to denote 0-forms, and Greek letters such as w, 7, 8 to denote k-forms

for k> 0.

EXERCISES

1. Let ¥ : R — R" be of class C". Show that the velocity vector of ¥
corresponding to the parameter value t is the vector 7.,(¢; e;).

2. If Aisopenin R* and a: A — R" is of class C", show that o (x; V) is the
velocity vector of the curve () = ax + tv) corresponding to parameter
value ¢ = 0.

3. Let M be a k-manifold of class C" in R™. Let p € M. Show that the
tangent space to M at p is well-defined, independent of the choice of the
coordinate patch.

4. Let M be a k-manifold in R of class C". Let pe M — M.

(a) Show that if (p;v) is a tangent vector to M, then there is a para-
metrized-curve v : (—¢,€}) — R™ whose image set lies in M, such
that (p; v) equals the velocity vector of v corresponding to parameter
value £ = 0. See Figure 29.4.

(b) Prove the converse. [Hint: Recall that for any coordinate patch c,
the map o~ is of class C". See Theorem 24.1.]

5. Let M be a k-manifold in R™ of class C”. Let q € M.
(a) Show that if (q;v) is a tangent vector to M at q, then there is a
parametrized-curve 7 : (—¢€,€) — R", where v carries either (—¢, 0]
or [0,€) into M, such that (q;v) equals the velocity vector of 7
corresponding to parameter value ¢ = 0.
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Figure 29.4

(b) Prove the converse.

§30. THE DIFFERENTIAL OPERATOR

We now introduce a certain operator d on differential forms. In general, the
operator d, when applied to a k-form, gives a k+1 form. We begin by defining
d for 0-forms.

The differential of a 0-form

A 0-form on an open set A of R” is a function f : A — R. The differential
df of f is to be a 1-form on A, that is, a linear transformation of 7(R") into
R, for each x € A. We studied such a linear transformation in Chapter 2. We
called it the “derivative of f at x with respect to the vector v.” We now look
at this notion as defining a 1-form on A.

Definition. Let A be open in R*; let f : A — R be a function of
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class C7. We define a 1-form df on A by the formula
df(x)(x;v) = f'(x;v) = Df(x) - v.

The 1-form df is called the differential of f. It is of class C™~! as a function
of x and v.

Theorem 30.1.  The operator d is linear on 0-forms.
Proof. Let f,g: A — R be of class C". Let h = af + bg. Then
Dh(x) = a D f(x) + b Dg(x),

so that
dh(x)(x;v) = a df(x)(x; v) + b dg(x)(x; V).

Thus dh = a(df) + b(dg), as desired. O

Using the operator d, we can obtain a new way of expressing the elemen-
tary 1-forms ¢; in R™:

Lemma 30.2, Let 331, ey 33,, be the elementary 1-forms in R™,
Let m; : R® — R be the i*" projection function, defined by the equation

7[','((1?1, ceey II?,,) = T;.
Then dr; = 55.-.
Proof. Since w; is a C* function, dm; is a 1-form of class C*°. We

compute

dmi(x)(x;v) = D7i(x) - v

(%}
=[00100] [ } = v;.
Un

Now it is common in this subject to abuse notation slightly, denoting the

i*h projection function not by 7; but by z;. Then in this notation, ¢; is equal
to dz;. We shall use this notation henceforth:

Thus dr; = :ﬁ',-. O

Convention. If x denotes the general point of R™, we denote the i*"
projection function mapping R™ to R by the symbol z;. Then dx; equals
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the elementary 1-form <7).- in R, If I = (41, ..., %) is an ascending
k-tuple from the set {1, ..., n}, then we introduce the notation

dey = d:l?,'1 A --'/\d:l?,'k

for the elementary k-form ¥r in R*. The general k-form can then be
written uniquely in the form

w = Z b[d:l?[,

(1
for some scalar functions by.
The forms dz; and dz; are of course characterized by the equations
dzi(x)(x;v) = v,
dz(x)((x;vy)s - -5 (x5v;)) = det X7,

where X is the matrix X = [vy -+ vi].
For convenience, we extend this notation to an arbitrary k-tuple J =
(Ji, - .-, Jk) from the set {1, ..., n}, setting

dzy =dzj, A--- Ndzj, .

Note that whereas dz; is the differential of a 0-form, dz; does not denote the
differential of a form, but rather a wedge product of elementary 1-forms.

REMARK. Why do we call the use of z; for 7; an abuse of notation? The
reason is this: Normally, we use a single letter such as f to denote a function,
and we use the symbol f(z) to denote the value of the function at the point z.
That is, f stands for the rule defining the function, and f(z) denotes an
element of the range of f. It is an abuse of notation to confuse the function
with the value of the function.

However, this abuse is fairly common. We often speak of “the function
2% 422 4+ 17 when we should instead speak of “the function f defined by the
equation f(z) = z° + 2z 4+ 1,” and we speak of “the function €” when we
should speak of “the exponential function.”

We are doing the same thing here. The valueof the i*" projection function
at the point x is the number ;; we abuse notation when we use Z; to denote
the function itself. This usage is standard, however, and we shall conform
to it.

If f is a O-form, then df is a 1-form, so it can be expressed as a linear
combination of elementary 1-forms. The expression is a familiar one:
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Theorem 30.3. Let A be open inR"; let f : A — R be of class C".
Then
df = (le)diltl + o4 (an)dil?n

In particular, df = 0 if f is a constant function.

In Leibnitz’s notation, this equation takes the form

of
oz,

This formula sometimes appears in calculus books, but its meaning is not
explained there.

_9f
df—g—adﬂ?l—f-_*. d(l?n.

Proof. We evaluate both sides of the equation on the tangent vector

(x;v). We have
df (x){(x;v) = Df(x)-v

by definition, whereas
Z D;f(x) dzy(x)(x;v) = Z D; f(x)v;.
=1 i=1

The theorem follows. O

The fact that df is only of class C*~! if f is of class C" is very inconve-
nient. It means that we must keep track of how many degrees of differentia-
bility are needed in any given argument. In order to avoid these difficulties,
we make the following convention:

Convention. Henceforth, we restrict ourselves to manifolds, maps,
vector fields, and forms that are of class C.

The differential of a k-form

We now define the differential operator d in general. It is in some sense
a generalized directional derivative. A formula that makes this fact explicit
appears in the exercises. Rather than using this formula to define d, we shall
instead characterize d by its formal properties, as given in the theorem that
follows.

Definition. If A is an open set in R”, let Q*(A) denote the set of all
k-forms on A (of class C'®®). The sum of two such k-forms is another k-form,
and so is the product of a k-form by a scalar. It is easy to see that QF(A)
satisfies the axioms for a vector space; we call it the linear space of k-forms

on A.
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Theorem 30.4. Let A be an open set in R*. There erists a unique
linear transformation

d: Q*(A) - QFF1(A),

defined for k >0, such that:
(1) If f is a 0-form, then df is the 1-form
df (x)(x;v) = Df(x) - v.
(2) If w and n are forms of orders k and {, respectively, then
dwAn) =dwAn+(-1)*wAdn
(3) For every form w,
d(dw) = 0.

We call d the differential operator, and we call dw the differential
of w.

Proof. Step 1. We verify uniqueness. First, we show that condi-
tions (2) and (3) imply that for any forms wy, ..., Wk, we have

d(dwy A---Adw) = 0.

If k = 1, this equation is a consequence of (3). Supposing it true for k — 1,
we set ) = (dwa A - - - A dwy) and use (2) to compute

d(dw; An) = d(dwy) A £ dwy Adn.

The first term vanishes by (3) and the second vanishes by the induction hy-
pothesis.

Now we show that for any k-form w, the form dw is entirely determined
by the value of d on 0-forms, which is specified by (1). Since d is linear, it
suffices to consider the case w = fdz;. We compute

dw = d(fd:l)I) = d(f/\d(l?[)
= df/\ dz; + f/\ d(d:l?l) by (2),
— df Adzy,

by the result just proved. Thus dw is determined by the value of d on the
0-form f.
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Step 2. We now define d. Its value for 0-forms is specified by (1). The
computation just made tells us how to define it for forms of positive order:
If A is an open set in R” and if w is a k-form on A, we write w uniquely in

the form
W= Z fI d(lf[,
[}
and define
dw = Z df[ A d(t[.
[1

We check that dw is of class C*. For this purpose, we first compute

dw = Z [zn: (D; f)dz;] Adzy.

[l j=t

To express dw as a linear combination of elementary k + 1 forms, one proceeds
as follows: First, delete all terms for which 7 is the same as one of the indices
in the k-tuple I. Second, take the remaining terms and rearrange the dz; so
the indices are in ascending order. Third, collect like terms. One sees in this
way that each component of dw is a linear combination of the functions D; f,
so that it is of class C®. Thus dw is of class C*°. (Note that if w were only
of class C™, then dw would be of class C™1.)
We show d is linear on k-forms with & > 0. Let

w:ZfId:I)I and n:Zg,dw,
{1 Y

be k-forms. Then

d(aw + bn) = dz (afr + bgr)dxy
i

=) " d(afi+bgr)Adzr by definition,
(1)

= Z (adfr +bdgr) Adz; since d is linear on 0-forms,
n

=adw+bdn.

Step 3. We now show that if J is an arbitrary k-tuple of integers from
the set {1, ..., n}, then

d(f/\d:l?_;):df/\d(l?_].
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Certainly this formula holds if two of the indices in J are the same, since
dz; = 0 in this case. So suppose the indices in J are distinct. Let I be
the k-tuple obtained by rearranging the indices in J in ascending order; let
7 be the permutation involved. Anticommutativity of the wedge product
implies that dz; = (sgn T)dz;. Because d is linear and the wedge product is
homogeneous, the formula d(f A dz) = df A dzr, which holds by definition,
implies that

(sgn m)d(f Adzy) = (sgn 7)df Adz;.

Our desired result follows.

Step 4. We verify property (2), in the case £ = 0 and £ = 0. We
compute

d(f Ng) =) D;(f -g)de;
j=1

= Z(Djf) -gdz; + Z f-(Djg)dz;

= (df)Ag+ f A(dg).

Step 5. We verify property (2) in general. First, we consider the case
where both forms have positive order. Since both sides of our desired equation
are linear in w and in 7, it suffices to consider the case

w= fdz; and n=gdz;.

We compute

dlwAn)=d(fg dzf Adzs)
=d(fg) Adz;Adz; by Step 3,
=(df Ag+ fAdg)Adx; Adx; Dy Step 4,
=(df Adzr) A(gAdzy)+ (-1)F(f Adzy) A(dg Adzy)
=dwAn+ (-1)fwAdn.
The sign (—1)* comes from the fact that dz; is a k-form and dg is a 1-form.
Finally, the proof in the case where one of k or £ is zero proceeds as in the

argument just given. If k = 0, the term dz; is missing from the equations,
while if £ = 0, the term dz; is missing. We leave the details to you.
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Step 6. We show that if f is a 0-form, then d(df) = 0. We have

a(df) =43 D;f dz;,

j=1

= Z d(D;f)Adz; by definition,
j=1

nM:

Z D,'Djfd(l?,' A dil?j.

To write this expression in standard form, we delete all terms for which ¢ = 7,
and collect the remaining terms as follows:

d(df) = _(D:D; f — D; Dif)dz; A dz;.

i<j

The equality of the mixed partial derivatives implies that d(df) = 0.

Step 7. We show that if w is a k-form with k > 0, then d(dw) = 0.
Since d is linear, it suffices to consider the case w = f dz;. Then

d(dw) = d(df Adzxy)
= d(df) Adz; — df Ad(dzy),
by property (2). Now d(df) = 0 by Step 6, and
d(dz;) =d(1)Adz; =0
by definition. Hence d(dw) = 0. O

Definition. Let A be an open set in R*. A 0-form f on A is said to be
exact on A if it is constant on A; a k-form w on A with k > 0 is said to be
exact on A if there is a k — 1 form 8 on A such that w = df. A k-form w on
A with k > 0 is said to be closed if dw = 0.

Every exact form is closed; for if f is constant, then df = 0, while if
w = df, then dw = d(df) = 0. Conversely, every closed form on A is exact
on A if A equals all of R®, or more generally, if A is a “star-convex” subset
of R®. (See Chapter 8.) But the converse does not holds in general, as we
shall see. If every closed k-form on A is exact on A, then we say that A is
homologically trivial in dimension k. We shall explore this notion further
in Chapter 8.
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EXAMPLE 1. Let A be the open set in R? consisting of all points (z,y) for
which z # 0. Set f(z,y) = 2/ |z| for (z,y) € A. Then fis of class C** on A,
and df =0 on A. But f is not exact on A because f is not constant on A.

EXAMPLE 2. Exactness is a notion you have seen before. In differential equa-
tions, for example, the equation

P(IL’, y) dl’-f-Q(:L’,y) dy =0

is said to be exact if there is a function f such that P = 8f/8z and Q =
Of/0y. In our terminology, this means simply that the 1-form Pdz+Qdy
is the differential of the 0-form f, so that it is exact.

Exactness is also related to the notion of conservative vector fields. In
R?, for example, the vector field

F=Pi+Qj+Rk
is said to be conservative if it is the gradient of a scalar field f, that is, if
P=0f/8z and Q=08f/0y and R=20f/0z.
This is precisely the same as saying that the form Pdz + Qdy + Rdz is the

differential of the 0-form f.

We shall explore further the connection between forms and vector fields
in the next section.

EXERCISES

1. Let A be open in R™.
(a) Show that Q*(A) is a vector space.
(b) Show that the set of all C™ vector fields on A is a vector space.

2. Consider the forms
w=zydz+3dy-yz dz,
n =z dr —yz° dy + 2z dz,
in R®. Verify by direct computation that
d(dw) =0 and d(wAn)=(dw)An—wAdy.

3. Let w be a k-form defined in an open set A of R". We say that w vanishes
at x if w(x) is the 0-tensor.
(a) Show that if w vanishes at each x in a neighborhood of xo, then dw
vanishes at Xo.
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(b) Give an example to show that if w vanishes at Xo, then dw need not
vanish at xp.

. Let A = R? ~ 0; consider the 1-form in A defined the equation

w=(z dz+ydy)/(z® +3°).

(a) Show w is closed.

{(b) Show that w is exact on A.
Prove the following:

Theorem. Let A = R? — 0; let

w=(-ydz+zdy)/(z° + 4*)

in A. Then w is closed, but not ezact, in A.
Proof. (a) Show w is closed.

(b) Let B consist of R? with the non-negative z-axis deleted. Show that
for each (z,y) € B, there is a unique ¢ with 0 < t < 27 such that

z=(2*+ y"’)l/2 cost and y=(z*+ yz)]/2 sint;

denote this value of t by ¢(z,y).

(c) Show that ¢ is of class C®. [Hint: The inverse sine and inverse
cosine functions are of class C® on the intervals (—7/2,7/2) and
(0, ), respectively.]

(d) Show that w = d¢ in B. [Hint: We have tan ¢ = y/z ifz #0 and
cotp=zfyify #0.)]

() Show that if g is a closed 0-form in B, then g is constant in B. [Hint:
Use the mean-value theorem to show that if a is the point (-1, 0) of
R?, then g(x) = g(a) for all x € B.]

(f) Show that w is not exact in A. [Hint: If w = df in A, then f-¢
is constant in B. Evaluate the limit of f(1,y) as y approaches 0
through positive and negative values.]

. Let A =R"-0. Let m be a fixed positive integer. Consider the following

n —1 form in A:

N=3 (-1)"'fidzs A---Adzi A+ Adaza,

=1

where fi(x) = i/ ||x||™, and where dz; means that the factor dz; is to

be omitted.

(a) Calculate dn.

(b) For what values of m is it true that dn = 0? (We show later that 5
is not exact.)
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*7. Prove the following, which expresses d as a generalized “directional deriva-
tive”:
Theorem. Let A be open in R™; let w be a k-1 form in A. Given
vi, ..., vk € R®, define

h(x) = dw(x)((x; V1), -- -, (X Vi),
9;(x) = wE)((5 V), -y (K57;), -0y (K5 V),
where @ means that the component a is to be omitted. Then

k

h(x) =Y (-1)’~" Dg;(x) - v;.

=1

Proof. (a) Let X =[vy --- vi]. For each j,let Y, =[vi---¥; - vi].

Given (4,%1, ..., tk—1), show that
k
det X (i, 1, ..., k1) = Y (=17 oijdet Yy (is, ..., ix1).
71=1

(b) Verify the theorem in the case w = f dz;.
(c) Complete the proof.

*$31. APPLICATION TO VECTOR AND SCALAR FIELDS

Finally, it is time to show that what we have been doing with tensor fields and
forms and the differential operator is a true generalization to R® of familiar
facts about vector analysis in R3. We will use these results in §38, when we
prove the classical versions of Stokes’ theorem and the divergence theorem.
We know that if A is an open set in R™, then the set Q*(A) of k-forms on A
is a linear space. It is also easy to check that the set of all C* vector fields
on A is a linear space. We define here a sequence of linear transformations
from scalar fields and vector fields to forms. These transformations act
as operators that “translate” theorems written in the language of scalar and
vector fields to theorems written in the language of forms, and conversely.
We begin by defining the gradient and the divergence operators in R™.
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Definition. Let A be open in R”. Let f : A — R be a scalar field in A.
We define a corresponding vector field in A, called the gradient of f, by the
equation

(grad f)(x) = (x; Dif(x)er +--- + Duf(X)en)-

If G(x) = (x; g(x)) is a vector field in A, where g : A — R" is given by the
equation
9(x) = gi(x)e1 + -+ + gn(x)en,

then we define a corresponding scalar field in A, called the divergence of G,
by the equation

(div G)(x) = D1g1(x) + - - + Dpga(x).

These operators are of course familiar from calculus in the case n = 3. The
following theorem shows how these operators correspond to the operator d:

Theorem 31.1. Let A be an open set in R*. There ezist vector
space isomorphisms a; and f3; as in the following diagram:

Scalar fieldsin A 2% Q9(A)

[ |

Vector fieldsin A =% Q(A)

Vector fields in A 222 Qr-1(A)

[ |

Scalar fieldsin A 2=, Q% (A)
such that

doag=0ojograd and dof,_; = f3,0div.

Proof. Let f and h be scalar fields in A; let

F(x)=(x; ) fi(x)e:) and G(x)=(x; Y gi(x)es)
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be vector fields in A. We define the transformations o; and §; by the equa-

tions
aﬂf = f,

alF = Zn: fidxi?
i=1

Bn-1G = Z(—-l)i—lg,' dziA--- A (/i?lf,' A Adzy,
i=1

Boh = hdzi A---Adza.

(As usual, the notation @ means that the factor a is to be omitted.) The fact
that each a; and f; is a linear isomorphism, and that the two equations hold,
is left as an exercise. 0O

This theorem is all that can be said about applications to vector fields in
general. However, in the case of R3, we have a “curl” operator, and something
more can be said.

Definition. Let A be open in R3; let
F(x) = (x; ) fi(x)ei)

be a vector field in A. We define another vector field in A, called the curl
of F, by the equation

(curl F)(x) = (x; (D2fs — D3 fa)er + (Dsfy — D1 fs)es + (D1 f2 — Daf1)es).

A convenient trick for remembering the definition of the curl operator is
to think of it as obtained by evaluation of the symbolic determinant

(3] €9 €3
det D1 D, D
i f2 fs

For R3, we have the following strengthened version of the preceding the-
orem:

Theorem 31.2. Let A be an open set in R3. There exist vector
space isomorphisms «; and fB; as in the following diagram:
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Scalar fieldsin A =% Q°(A)

- [+

Vector fields in A % Q!(A)

Jewe |

Vector fieldsin 4 2% Q2(A)

ldiv ld
Scalar fields in 4 22 Q3(A)
such that

doog=ajograd and doa; =fz0ocurl and do By = fB30div.

Proof. The maps o; and f; are those defined in the proof of the pre-
ceding theorem. Only the second equation needs checking; we leave it to
you. [

EXERCISES

1. Prove Theorems 31.1 and 31.2.

2. Note that in the case n = 2, Theorem 31.1 gives us two maps o; and (3,
from vector fields to 1-forms. Compare them.

3. Let A be an open set in R®.

(a) Translate the equation d(dw) = 0 into two theorems about vector
and scalar fields in R®,

(b) Translate the condition that A is homologically trivial in dimension k
into a statement about vector and scalar fields in A. Consider the
cases k= 0,1,2.

4. For R*, there is a way of translating theorems about forms into more
familiar language, if one allows oneself to use matrix fields as well as vector
fields and scalar fields. We outline it here. The complications involved
may help you understand why the language of forms was invented to deal
with R” in general.

A square matrix B is said to be skew-symmetric if B = —B.

Let A be an open set in R*. Let S(A) be the set of all C* functions H

mapping A into the set of 4 by 4 skew-symmetric matrices. If hi;(x)

denotes the entry of H(x) in row ¢ and column j, define v, : S(A4) —

02(A) by the equation

12(H) = Z hi,(x)dz; A dz,.

i<j
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(a) Show <2 is a linear isomorphism.

(b) Let ag,0u1, 3,04 be defined as in Theorem 31.1. Define operators
“twist” and “spin” as in the following diagram:

Vector fields in A =% Q'(A)

[ v |-

S(A) 2, 0%(A)

Jo ?

Vector fields in 4 2> Q3 (A)
such that
doa; =7, 0twist and do<yz =30 spin.
(These operators are facetious analogues in R* of the operator “curl”
in R%.)

5. The operators grad, curl, and div, and the translation operators a; and
Bj, seem to depend on the choice of a basis in R", since the formulas
defining them involve the components of the vectors involved relative to
the basis e;,-- -, en in R™. However, they in fact depend only on the
inner product in R"™ and the notion of right-handedness, as the following
exercise shows.

Recall that the k-volume function V(xi, ..., X&) depends only on
the inner product in R". (See the exercises of §21.)
(a) Let F(x) = (x; f(x)) be a vector field defined in an open set of R".
Show that o, F' is the unique 1-form such that

a1 F(x)(x;v) = (f(x), ).
(b) Let G(x) = (x;g(x)) be a vector field defined in an open set of R™.
Show that 8,_;G is the unique n — 1 form such that

'B""IG(X)((X; vl)’ LR (x; vn—l)) =e€- V(g(x):vl, ey V"-l),
where € = +1 if the frame (g(x), V1, ..., Vn—1) is right-handed, and
€ = —1 otherwise.

(c) Let h be a scalar field defined in an open set of R”. Show that Brh
is the unique n-form such that

Brh(x){((x;v1), -y (X5 v,,)) =¢-h(x) -V(vi, ..., Vn),
where € = +1if (V1, ..., Vn) is right-handed, and € = —1 otherwise.
(d) Conclude that the operators grad and div (and curl if n = 3) depend
only on the inner product in R” and the notion of right-handedness

in R®. [Hint: The operator d depends only on the vector space
structure of R".]
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§32. THE ACTION OF A DIFFERENTIABLE MAP

fa: A — R"isaC® map, where A is open in R¥, then a gives rise
to a linear transformation a, mapping the tangent space to R* at x into
the tangent space to R™ at a(x). Furthermore, we know that any linear
transformation T : V' — W of vector spaces gives rise to a dual transformation
T : AHW) — AYV) of alternating tensors. We combine these two facts to
show how a C° map « gives rise to a dual transformation of forms, which
we denote by a*. The transformation a* preserves all the structure we have
imposed on the space of forms—the vector space structure, the wedge product,
and the differential operator.

Definition. Let A be open in R¥;let & : A — R™ be of class C*°; let B
be an open set of R” containing a(A). We define a dual transformation of
forms

a1 QYB) - QYA)

as follows: Given a 0-form f : B — R on B, we define a 0-form a* f on A by
setting (a* f)(x) = f(a(x)) for each x € A. Then, given an f-form w on B
with £ > 0, we define an {-form a*w on A by the equation

(e w) (X)((%;v1), - .-, (x5 v,)) = w(a(x)) (au(x;vy), ..., a.(x;v,)).

Since f and w and a and Da are all of class C™, so are the forms a*f
and a*w. Note that if f and w and a were of class C", then a* f would be
of class C'" but a*w would only be of class C"~1. Here again it is convenient
to have restricted ourselves to C* maps.

Note that if a is a constant map, then o* f is also constant, and a*w is
the O-tensor.

The relation between o* and the dual of the linear transformation a, is
the following: Given a : A — R™ of class C, with a(x) =y, it induces the
linear transformation

T=a,: TX(R") — Ty, (R™);

this transformation in turn gives rise to a dual transformation of alternating
tensors,

T* : A(Ty(R™)) — AY(T<(R)).

If wis an £-form on B, then w(y) is an alternating tensor on T,(R"), so that
T*(w(y)) is an alternating tensor on Tx(RF). It satisfies the equation

T*(w(y) = (a*w)(x);
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for

T*(W(y)) ((x5v1)s - -5 (X5v)) = w(@(x)) (@u(x;vy), -5 a.(x;vy))
= (@ w)(x) (X;V1)5 -+ s (X5V2))-

This fact enables us to rewrite earlier results concerning the dual transforma-
tion T* as results about forms:

Theorem 32.1. Let A be open in R¥; let @ : A — R™ be a C*®
map. Let B be open in R™ and contain a(A); let 3: B —R" be a C>
map. Let w,n,0 be forms defined in an open set C of R* containing
B(B); assume w and 7 have the same order. The transformations o
and 3* have the following properties:

(1) B (aw + bn) = a(f*w) + b(B"n)-

(2) B*(wAl)=p*wApo.

(3) (Boa)'w=a*(fw).

Proof. See Figure 32.1. In the case of forms of positive order, proper-
ties (1) and (3) are merely restatements, in the language of forms, of Theo-
rem 26.5, and (2) is a restatement of (6) of Theorem 28.1.

Checking the properties when some or all of the forms have order zero is
a computation we leave to you. [

w, 77?‘

R* R™ R"

Figure 32.1
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This theorem shows that a” preserves the vector space structure and the
wedge product. We now show it preserves the operator d. For this purpose
(and later purposes as well), we obtain a formula for computing a*w. If A4 is
open in R*¥ and @ : A — R”, we derive this formula in two cases—when w is
a 1-form and when w is a k-form. This is all we shall need. The general case
is treated in the exercises.

Since a* is linear and preserves wedge products, and since a*f equals
f o a, it remains only to compute a* for elementary 1-forms and elementary
k-forms. Here is the required formula:

Theorem 32.2. Let A be open in R¥; let a : A — R™ be a C®
map. Let x denote the general point of R*; let y denote the general
point of R*. Then dz; and dy; denote the elementary 1-forms in R*
and R", respectively.

(a) a*(dy;) = dai.

(b) If I = (41, ..., i) is an ascending k-tuple from the set {1, ..., n},
then

a*(dyr) = (det %%)d:cl A A dzy,

where
aa, _ 6(ail, caey a,-,‘)

Ox - 5(:1:1, ...,l‘k) )

Proof. (a) Set y = a(x). We compute the value of @*(dy;) on a typical
tangent vector as follows:
(" (dys)) (x)(x; v) = dys(y) (@ (x; v))

= ¢*" component of (Da(x) - v)

Dja;(x) - v;

[
U
-

1l
.M"'

Q;
I;

I
.M"'
QDIQJ

[
1}
—
<

(x) dz; (x)(x; v).

It follows that
k

a” (dy;) :E

By Theorem 30.3, the latter expression equals da;.
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(b) The form a*(dyr) is a k-form defined in an open set of R¥, so it has
the form

a*(dyr) =hdzy A--- A dxg

for some scalar function h. If we evaluate the right side of this equation on
the k-tuple (x;e;), ..., (x;e;), we obtain the function h(x). The theorem
then follows from the following computation:

h(x) = (e (dyn)) () ((x;ey), - - (x;€4))
= dyl()')(a* (x;€1), .-y Qul(x; ek))
= dyl(y)((y;aa/azl)y RN ) (y; aa/aa"lc))

= det[Da(x))s
_ get Ju
= det x O

It is easy to remember the formula (a); to compute a*(dy;), one simply
takes the form dy; and makes the substitution y; = o;(x)!
Note that one could compute a*(dy;) by the formula
o (dyr) = a*(dgi,) A+ A e (dys, )
= da,-l /\-'-/\da,-k,

but the computation of this wedge product is laborious if k> 2.

Theorem 32.3. Let A be open in R¥; let « : A — R™ be of
class C*. If w is an €-form defined in an open set of R* containing
a(A), then

a*(dw) = d(a"w).

Proof. Let x denote the general point of R*; let y denote the general
point of R™.

Step 1. We verify the theorem first for a 0-form f. We compute the left
side of the equation as follows:

(*) a*(df) = o (3 (D:f) dw:)
i=1

= Z((D,f)oa) da,-.
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Then we compute the right side of the equation. We have

(++) d(@*f)=d(foa)

D;(f o a)dz;.

HMa-

We now apply the chain rule. Setting y = a(x), we have
D(f o a)(x) = Df(y) - Da(x);

since D(f o @) and D f are row matrices, it follows that

D;i(foa)(x)= Df(y)- (7 column of Da(x))

=Y Dif(y) - Djai(x).

i=1
Thus .
Dj(foa) = Z((Dif)oa) -Dja,-.
i=1

Substituting this result in the equation (#*), we have

(% * %) da*f) = Z Z((D [)oa)-Dja;dz;

j=1 i=

Z (Dif) 0 @) da.
i=1

Comparing () and (* * %), we see that a*(df) = d(a" f).
Step 2. We prove the theorem for forms of positive order. Since o* and d

are linear, it suffices to treat the case w = f dyy, where I = (¢4, ..., ;) is an
ascending {-tuple from the set {1, ..., n}. We first compute
(1) o (dw) = o~ (df A dyr)
= o*(df) A a*(dy)).
On the other hand,
(i) d(a’w) = dla*(f Adyy))]
= d[(a”f) A o (dyr)]

= d(@” f)Aa’(dyr) + (o f) A0,
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since

d(a*(dyy)) = d(daz, A---Ada;,) = 0.

The theorem follows by comparing (1) and (tt) and using the result of
Step 1. O

We now have the algebra of differential forms at our disposal, along with
differential operator d. The basic properties of this algebra and the operator d,
as summarized in this section and §30, are all we shall need in the sequel.

It is at this point, where one is dealing with the action of a differentiable
map, that one begins to see that forms are in some sense more natural objects
to deal with than are vector fields. A C® map o : A — R”, where A is open
in R¥, gives rise to a linear transformation @, on tangent vectors. But there is
no way to obtain from & a transformation that carries a vector fieldon A to a
vector field on a(A). Suppose for instance that F(x) = (3; f(x)) is a vector
field in A. If y is a point of the set B = a(A) such that y = a(x1) = a(xz) for
two distinct points x1,x2 of A, then a. gives rise to two (possibly different)
tangent vectors au. (x1; f(x1)) and o, (x2; f(x2)) at y! See Figure 32.2.

Figure 32.2

This problem does not occur if @ : A — B is a diffeomorphism. In this
case, one can obtain an induced map &, on vector fields. One assigns to the
vector field F on A, the vector field G = @.F on B defined by the equation

G(y) = a.(F(a(y)))-

A scalar field h on A gives rise to a scalar field k = @.h on B defined by the
equation k = hoa™!. The map &. is not however very natural, for it does not
in general commute with the operators grad, curl, and div of vector calculus,
nor with the “translation” operators ¢; and (3; of §31. See the exercises.
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The Action of a Differentiable Map
EXERCISES

. Prove Theorem 32.1 when w and 7 have order zero and when 8 has order
zero.

. Let o : R® — R® be a C* map. Show directly that
day Adas Adas = (det Da(l, 3, 5)) dz, Adza Adzs.

. In R?, let
w=zydr+2zdy—ydz.

Let a : R* — R® be given by the equation
a(u, v) = (uv, u’, 3u +v).

Calculate dw and a*w and a*(dw) and d(a*w) directly.

. Show that (a) of Theorem 32.2 is equivalent to the formula ao*(dy:) =
d(a"y:), where yi : R® — R is the ** projection function in R".

. Prove the following formula for computing a*w in general:
Theorem. Let A be open in R*; leto.: A — R™ be of class C*. Letx
denote the general point of R*; lety denote the general point of R™.
If I = (i, ...,14,) is an ascending £-tuple from the set {1, ..., n},
then

o (dyr) =y " (det g:j)dzj.
W

Here J = (j1, ..., je) is an ascending £-tuple from the set {1, ..., k}
and
fa; _ 6(01.-1 yoon ,a.—,)

6::1 - 6(::,-1,...,:::,-,) )

This exercise shows that the transformations a; and B; of §31 do not
in general behave well with respect to the maps induced by a diffeomor-
phism a.

Let o : A — B be a diffeomorphism of open sets in R". Let x denote
the general point of A, and let y denote the general point of B. If
F(x) = (x; f(x)) is a vector field in A, let G(y) = a. (F(a"(y))) be
the corresponding vector field in B.

(a) Show that the I-forms a; G and a; F do not in general correspond
under the map a®. Specifically, show that a*(a,G) = oy F for all F
if and only if Da(x) is an orthogonal matrix for each x. [Hint: Show
the equation a*(a1G) = oy F is equivalent to the equation

Da(x)"" - Da(x) - f(x) = f(x).]

(b) Show that a*(Bn—1G) = Ba_1 F for all F if and only if det Do = +1.
[Hint: Show the equation a*(Ba—1G) = Bn_1 F is equivalent to the
equation f(x) = (det Da(x)) - f(x).]
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(c) If h is a scalar field in A, let k = h o a™' be the corresponding
scalar field in B. Show that a.(8.k) = Bnh for all h if and only if
det Da = +1.

7. Use Exercise 6 to show that if o is an orientation-preserving isometry of
R", then the operator &* on vector fields and scalar fields commutes with
the operators grad and div, and with curl if n = 3. (Compare Exercise 5

of §31.)



Stokes’ Theorem

We saw in the last chapter how k-forms provide a generalization to R™ of the
notions of scalar and vector fields in R3, and how the differential operator d
provides a generalization of the operators grad, curl, and div. Now we define
the integral of a k-form over a k-manifold; this concept provides a generaliza-
tion to R™ of the notions of line and surface integrals in R3. Just as line and
surface integrals are involved in the statements of the classical Stokes’ theorem
and divergence theorem in R3, so are integrals of k-forms over k-manifolds
involved in the generalized version of these theorems.

We recall here our convention that all manifolds, forms, vector fields, and
scalar fields are assumed to be of class C'.

§33. INTEGRATING FORMS OVER PARAMETRIZED-MANIFOLDS

In Chapter 5, we defined the integral of a scalar function f over a manifold,
with respect to volume. We follow a similar procedure here in defining the
integral of a form of order k over a manifold of dimension k. We begin with
parametrized-manifolds.

First let us consider a special case.

Definition. Let A be an open set in R¥; let 77 be a k-form defined in A.
Then 77 can be written uniquely in the form

n=fdziA---Adzy.
275
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We define the integral of 77 over A by the equation

An=LL

provided the latter integral exists.

This definition seems to be coordinate-dependent; in order to define fA 7,
we expressed 7 in terms of the standard elementary 1-forms dz;, which depend
on the choice of the standard basis ey, ..., e in R¥. One can, however,
formulate the definition in a coordinate-free fashion. Specifically, ifa;, ..., a;
is any right-handed orthonormal basis for R*, then it is an elementary exercise
to show that

Jn=] I (Cm, o ()

Thus the integral of 77 does not depend on the choice of basis in R¥, although
it does depend on the orientation of R¥.

We now define the integral of a k-form over a parametrized-manifold of
dimension k.

Definition. Let A be open in R¥; let @ : A — R™ be of class C°.
The set Y = a(A), together with the map @, constitute the parametrized-
manifold Y,. If w is a k-form defined in an open set of R™ containing Y, we
define the integral of w over Y, by the equation

/ wz/a*w,
Y A

provided the latter integral exists. Since a* and [, are linear, so is this
integral.

We now show that the integral is invariant under reparametrization, up
to sign.

Theorem 33.1. Let g: A — B be a diffeomorphism of open sets
in R¥. Assume det Dg does not change sign on A. Let 3 : B — R™ be
a map of class C®; let Y = B(B). Let a = Bog; thena: A —R" and
Y = a(A). Ifw is a k-form defined in an open set of R* containing Y,
then w is integrable over Y3 if and only if it is integrable over Y in

this case,
/ w== w,
o YB
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Figure 33.1

where the sign agrees with the sign of det Dg.

Proof. Let x denote the general point of A; let y denote the general
point of B. See Figure 33.1. We wish to show that

/a*w:e/ frw,
A B

where € = +1 and agrees with the sign of det Dg. If we set = $*w, then
this equation is equivalent to the equation

/g‘n=€/n-
A B

Let us write 7 in the form n = f dy; A--- Ady;. Then
g'n=(fo9)g"(dys A--- Adys)
= (fog)det(Dg)dz, A--- Adzy.
(Here we apply Theorem 32.2, in the case k = n.) Our equation then takes

the form
/A(fog)deth=e/Bf.

This equation follows at once from the change of variables theorem, since
det Dg = €|det Dg|. O

We remark that if A is connected (that is, if A cannot be written as the
union of two disjoint nonempty open sets), then the hypothesis that det Dg
does not change sign on A is automatically satisfied. For the set of points
where det Dg is positive is open, and so is the set of points where it is negative.

This integral is fairly easy to compute in practice. One has the following
result:
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Theorem 33.2. Let A be open in R¥; let  : A — R™ be of
class C*; let Y = a(A). Let x denote the general point of A; and
let z denote the general point of R*. If

w=f dz

is a k-form defined in an open set of R® containing Y, then

,/ya w= /A(f o @) det(day [ Ox).

Proof. Applying Theorem 32.2, we have
= (fO a) det((?al/ax) diL'l Ao A dIL'k.
The theorem follows. [

The notion of a k-form is a rather abstract one; the notion of its integral
over a parametrized-manifold is even more abstract. In a later section (§36)
we discuss a geometric interpretation of k-forms and of their integrals that
gives some insight into their intuitive meaning.

REMARK. We can now make sense of the “dz” notation commonly used in
single-variable calculus. If = f dz is a 1-form defined in the open interval
= (a, b) of the real line R, then

/n=/f
A A

b
/fdz=/fs
A a

where the notation on the left denotes the integral of a form; and the notation
on the right denotes the integral of a function! They are equal by definition.
Thus the “dz” notation used in connection with single integrals in calculus
makes perfect sense once one has studied differential forms.

One can also make sense of the notation commonly used in calculus to
denote a line integral. Given a l1-form P dz + Q dy + R dz, defined in an
open set A of R®, and given a parametrized-curve v : (a,b) — A, one has by
the preceding theorem the formula

/ Pdz+Qdy+ Radz
c"l

by definition. That is,

- [ POO) G+ Q6w )22 4 R(0) D1 at,
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where C is the image set of . This is just the formula given in calculus
for evaluating the line integral fc Pdzr + Q dy + R dz. Thus the notation
used for line integrals in calculus makes perfect sense once one has studied
differential forms.

It is considerably more difficult, however, to make sense of the “dz dy”
notation commonly used in calculus when dealing with double integrals. If f
is a continuous bounded function defined on a subset A of R?, it is common
in calculus to denote the integral of f over A by the symbol

/ / f(2,y) dz dy.

Here the symbol “dz dy” has no independent meaning, since the only product
operation we have defined for 1-forms is the wedge product. One justification
for this notation is that it resembles the notation for the iterated integral.
And indeed, if A is the interior of a rectangle [a, ] x [¢, d], then we have the

equation / “ /‘z " fiz,) deldy = /Af’

by the Fubini theorem. Another justification for this notation is that it re-
sembles the notation for the integral of a 2-form, and one has the equation

/fd.’l!/\dy:/f
A A

by definition. But a difficulty arises when one reverses the roles of  and 7.
For the iterated integral, one has the equation

/ab[/cdf(z,y) dy]dz=/Af,

and for the integral of a 2-form, one has the equation

AfdyAd:c:—/Af!

Which rule should one follow in dealing with the symbol

//Af(z,y) dy dz ?

Which ever choice one makes, confusion is likely to occur. For this reason, the
“dz dy” notation is one we shall not use.

One could, however, use the “dV” notation introduced in Chapter 5
without ambiguity. If A is open in R*, then A can be considered to be a
parametrized-manifold that is parametrized by the identity map a: A — A!

Then
Aade=A(f°“)V(D(“’) - [

since D(a) is the identity matrix. Of course, the symbol d used here bears
no relation to the differential operator d.
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EXERCISES

1.

Let A=(0,1)°. Let «: A — R® be given by the equation
a(u,v) = (u,v,u* +v° +1).

Let Y be the image set of . Evaluate the integral over Y, of the 2-form
z2dz; Adzs + 2123 dzy Adzs.

. Let A=(0,1)%. Let o : A — R* be given by the equation

a(s,t,u) = (s,u,t, (2u — t)%).

Let Y be the image set of a. Evaluate the integral over Y, of the 3-form
F 3 d:L'] A d.’l?4 A d.’l!3 + 22223 d.’L‘l A d:L‘Q A d.’l!3.

(a) Let A be the open unit ball in R%. Let or: A — R? be given by the
equation
o(u,v) = (u,v,[1 - u? — v*]/?).
Let Y be the image set of &. Evaluate the integral over Y, of the
form (1/ ||x||"‘) (.’Dl dza A dzrs — 22 d:!,'] A dxa + Z3 dzi A d.’l?2).
(b) Repeat (a) when
a(u,v) = (u,v,~[1 - v’ - V2.
. If nis a k-form in R*, and if &), ..., ax is a basis for R*, what is the

relation between the integrals

/,4” and /xeAn(x)((x;al),,,,,(x;ak)) ’

Show that if the frame (a1, ..., ax) is orthonormal and right-handed,
they are equal.
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§34. ORIENTABLE MANIFOLDS

We shall define the integral of a k-form w over a k-manifold M in much the
same way that we defined the integral of a scalar function over M. First,
we treat the case where the support of w lies in a single coordinate patch
a: U — V. In this case, we define

/ w=/ a*w.
M IntU

However, this integral is invariant under reparametrization only up to sign.
Therefore, in order that the integral [, w be well-defined, we need an extra
condition on M. That condition is called orientability. We discuss it in this
section.

Definition. Let g : A — B be a diffeomorphism of open sets in RF.
We say that g is orientation-preserving if det Dg > 0 on A. We say g is
orientation-reversing if det Dg < 0 on A.

This definition generalizes the one given in §20. Indeed, there is associated
with ¢ a linear transformation of tangent spaces,

g+ : T(R*) — Tq(X)(Rk)v

given by the equation g,(x;v) = (g(x); Dg(x) - v). Then g is orientation-
preserving if and only if for each x, the linear transformation of R¥ whose
matrix is Dg is orientation-preserving in the sense previously defined.

Definition. Let M be a k-manifold in R®. Given coordinate patches
a; : Ui — Vi on M for i = 0,1, we say they overlap if V, N V; is non-
empty. We say they overlap positively if the transition function al—1 o Qg
is orientation-preserving. If M can be covered by a collection of coordinate
patches each pair of which overlap positively (if they overlap at all), then M
is said to be orientable. Otherwise, M is said to be non-orientable.

Definition. Let M be a k-manifold in R*. Suppose M is orientable.
Given a collection of coordinate patches covering M that overlap positively,
let us adjoin to this collection all other coordinate patches on M that overlap
these patches positively. It is easy to see that the patches in this expanded
collection overlap one another positively. This expanded collection is called
an orientation on M. A manifold M together with an orientation of M is
called an oriented manifold.
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This discussion makes no sense for a 0-manifold, which is just a discrete
collection of points. We will discuss later what one might mean by “orienta-
tion” in this case.

If V is a vector space of dimension k, then V is also a k-manifold. We
thus have two different notions of what is meant by an orientation of V. An
orientation of V was defined in §20 to be a collection of k-frames in V; it is
defined here to be a collection of coordinate patches on V. The connection
between these two notions is easy to describe. Given an orientation of V' in the
sense of §20, we specify a corresponding orientation of V' in the present sense
as follows: For each frame (vi, ..., vi) belonging to the given orientation
of V, the linear isomorphism « : R* — V such that a(e;) = v; for each ¢ is
a coordinate patch on V. Two such coordinate patches overlap positively, as
you can check; the collection of all such specifies an orientation of V' in the
present sense.

Oriented manifolds in R” of dimensions 1 and n—1 and n

In certain dimensions, the notion of orientation has a geometric interpre-
tation that is easily described. This situation occurs when k equals 1or n—1
or n. In the case k = 1, we can picture an orientation in terms of a tangent
vector field, as we now show.

Definition. Let M be an oriented 1-manifold in R”. We define a corre-
sponding unit tangent vector field T on M as follows: Given p € M, choose a
coordinate patch a : U — V on M about p belonging to the given orientation.

Define
T(p) = (p; Da(to)/||Da(to)ll ),

where 1o is the parameter value such that a(to) = p. Then T is called the
unit tangent field corresponding to the orientation of M.

Note that (p; Da(to)) is the velocity vector of the curve a corresponding
to the parameter value ¢ = to; then T'(p) equals this vector divided by its
length.

We show T is well-defined. Let 3 be a second coordinate patch on M
about p belonging to the orientation of M. Let p = 3(t;) and let g = 1 oc.
Then g is a diffeomorphism of a neighborhood of ¢, with a neighborhood of

t;, and
Da(to) = D(B 0 g) (to)

Now Dg(to) is a 1 by 1 matrix; since g is orientation-preserving, Dg(to) > 0.

Then
Da(to)/ ||Da(to)ll = DB(t:)/ [IDBE)I-

It follows that the vector field T is of class C*, since to = a~'(p) is a
C® function of p and Da(?) is a C* function of 1.
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EXAMPLE 1. Given an oriented 1-manifold M, with corresponding unit tan-
gent field T, we often picture the direction of T by drawing an arrow on the
curve M itself. Thus an oriented 1-manifold gives rise to what is often called
in calculus a directed curve. See Figure 34.1.

o » T(p)

Figure 34.1

A difficulty arises if M has non-empty boundary. The problem is in-
dicated in Figure 34.2, where M consists of the two points pand q. If
a:U — V is a coordinate patch about the boundary point p of M, the fact
that U is open in H' means that the corresponding unit tangent vector T'(p)
must point into M from p. Similarly, T(q) points into M from q. In the
1-manifold indicated, there is no way to define a unit tangent field on M that
points into M at both p and q. Thus it would seem that M is not orientable.
Surely this is an anomaly.

Figure 34.2

The problem disappears if we allow ourselves coordinate patches whose
domains are open sets in R? or H! or in the left half-line L! = {x]x <o0}.
With this extra degree of freedom, it is easy to cover the manifold of the
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previous example by coordinate patches that overlap positively. Three such
patches are indicated in Figure 34.3.

Y

zT\

Figure 34.3

In view of the preceding example, we henceforth make the following con-
vention:

Convention. In the case of a 1-manifold M, we shall allow the
domains of the coordinate patches on M to be open sets in R! or in H!
or inlL!.

It is the case that, with this extra degree of freedom, every 1-manifold is
orientable. We shall not prove this fact.

Now we consider the case where M is an n — 1 manifold in R™. In this
case, we can picture an orientation of M in terms of a unit normal vector

field to M.

Definition. Let M be an n — 1 manifold in R*. If p € M, let (p;n) be
a unit vector in the n-dimensional vector space T,(R") that is orthogonal to
the n — 1 dimensional linear subspace T,(M). Then n is uniquely determined
up to sign. Given an orientation of M, choose a coordinate patch a : U — V
on M about p belonging to this orientation; let a(x) = p. Then the columns
da/dz; of the matrix Da(x) give a basis

(p;@a/azl), ey (p;(')a/(?z,,_l)

for the tangent space to M at p. We specify the sign of n by requiring that
the frame

(n,0a/0z:, ..., 0af/0zs_1)
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be right-handed, that is, that the matrix [n  Da(x)] have positive determi-
nant. We shall show in a later section that n is well-defined, independent of
the choice of a, and that the resulting function n(p) is of class C®. The
vector field N(p) = (p;n(p)) is called the unit normal field to M corre-
sponding to the orientation of M.

EXAMPLE 2. We can now give an example of a manifold that is not orientable.
The 2-manifold in R® that is pictured in Figure 34.4 has no continuous unit
normal vector field. You can convince yourself of this fact. This manifold is
called the M&bius band.

Figure 34.4

EXAMPLE 3. Another example of a non-orientable 2-manifold is the Klein
bottle. It can be pictured in R® as the self-intersecting surface of Figure 34.5.
We think of K as the space swept out by a moving circle, as indicated in the
figure. One can represent K as a 2-manifold without self-intersections in R*
as follows: Let the circle begin at position Co, and move on to Cy, Ca, and so
on. Begin with the circle lying in the subspace R® x 0 of R*; as it moves from
Co to Cy, and on, let it remain in R® x 0. However, as the circle approaches
the crucial spot where it would have to cross a part of the surface already
generated, let it gradually move “up” into R® x Hi until it has passed the
crucial spot, and then let it come back down gently into R® x 0 and continue
on its way!

Figure 34.5 Figure 34.6
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To see that K is not orientable, we need only note that K contains a
copy of the Mébius band M. See Figure 34.6. If K were orientable, then M
would be orientable as well. (Take all coordinate patches on M that overlap
positively the coordinate patches belonging to the orientation of K.)

Finally, let us consider the case of an n-manifold M in R". In this case,
not only is M orientable, but it in fact has a “natural” orientation:

Definition. Let M be an n-manifold in R®. If a : U — V is a co-
ordinate patch on M, then Da is an n by n matrix. We define the natu-
ral orientation of M to consist of all coordinate patches on M for which
det Da > 0. It is easy to see that two such patches overlap positively.

We must show M may be covered by such coordinate patches. Given
p€ M,let @ :U — V be a coordinate patch about p. Now U is open in
either R® or H®; by shrinking U if necessary, we can assume that U is either
an open €-ball or the intersection with H® of an open e-ball. In either case,
U is connected, so det Da is either positive or negative on all of U. If the
former, then a is our desired coordinate patch about p; if the latter, then
a o is our desired coordinate patch about p, where r : R* — R™ is the map

P(Z1,Z2, -y Tn) = (—21,%2, ..., Tn).

Reversing the orientation of a manifold

Let 7 : R — R* be the reflection ma
p
’I‘(IE],IL‘Q, ceey IL'k) = (-—-1'1,1‘2, ey l‘k);

it is its own inverse. The map r carries H¥ to H* if £ > 1, and it carries H!

to the left half-line L! if k = 1.

Definition. Let M be an oriented k-manifold in R®. If o; : U; = V;
is a coordinate patch on M belonging to the orientation of M, let J3; be the
coordinate patch

Bi=a;or:r(U;)— V.

Then f; overlaps a; negatively, so it does not belong to the orientation of M.
The coordinate patches 3; overlap each other positively, however (as you can
check), so they constitute an orientation of M. It is called the reverse, or
opposite, orientation to that specified by the coordinate patches a;.

It follows that every orientable k-manifold M has at least two orienta-
tions, a given one and its opposite. If M is connected, it has only two (see
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WIUNIUDICD,

Figure 34.7

the exercises). Otherwise, it has more than two. The 1-manifold pictured in
Figure 34.7, for example, has four orientations, as indicated.

We remark that if M is an oriented 1-manifold with corresponding tangent
field T, then reversing the orientation of M results in replacing T by —T.
For if o : U — V is a coordinate patch belonging to the orientation of M,
then a o r belongs to the opposite orientation. Now (a o 7)(t) = a(—t), so
that d(aor)/dt = —da/dt.

Similarly, if M is an oriented n — 1 manifold in R® with corresponding
normal field N, reversing the orientation of M results in replacing N by —N .
For if @ : U — V belongs to the orientation of M, then a o r belongs to the
opposite orientation. Now

daor)  Oda HNaor) Oa .. .
_a_z:l_ £ _63)1 and T = azi if 2> 1.
Furthermore, one of the frames
o Oo e 4 _Do da  Oa
TRl Pl PRt et l PR P

is right-handed if and only if the other one is. Thus if n corresponds to the
coordinate patch o, then —n corresponds to the coordinate patch o 7.

The induced orientation of M

Theorem 34.1. Let k > 1. If M is an orientable k-manifold with
non-empty boundary, then OM is orientable.

Proof. Let p € OM; let & : U — V be a coordinate patch about p.
There is a corresponding coordinate patch ag on M that is said to be ob-
tained by restricting a. (See §24.) Formally, if we define b : R¥=1 — R* by
the equation

b(lL'l, . IL'k_l) = (1’1, ey IL'k_l,O),

then ay = aob.
We show that if @ and § are coordinate patches about p that overlap
positively, then so do their restrictions ag and By. Let g : Wy — W, be the
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Figure 34.8

transition function g = 3~! o &, where Wy and W) are open in H*. Then
det Dg > 0. See Figure 34.8.
Now if x € OHF, then the derivative Dg of g at x has the last row

ng = [0 -0 (')gk/('):ck]

where 8gi/0z; > 0. For if one begins at the point x and gives one of the
variables 1, ..., Tx—1 an increment, the value of g does not change, while
if one gives the variable z a positive increment, the value of gi increases; it
follows that dgi /0z; vanishes at x if j < k and is non-negative if j = k.

Since det Dg # 0, it follows that 8gx/0zx > 0 at each point x of JH*.
Then because det Dg > 0, it follows that

a(gl, [EER) gk—l)
det > 0.
0Ty, ...y Th1)

But this matrix is just the derivative of the transition function for the coor-
dinate patches ag and Sy on M. O

The proof of the preceding theorem shows that, given an orientation of M,
one can obtain an orientation of OM by simply taking restrictions of coordi-
nate patches that belong to the orientation of M. However, this orientation
of @M is not always the one we prefer. We make the following definition:

Definition. Let M be an orientable k-manifold with non-empty bound-
ary. Given an orientation of M, the corresponding induced orientation of
OM is defined as follows: If k is even, it is the orientation obtained by simply
restricting coordinate patches belonging to the orientation of M. If k is odd,
it is the opposite of the orientation of M obtained in this way.
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EXAMPLE 4. The 2-sphere S? and the torus T are orientable 2-manifolds,
since each is the boundary of a 3-manifold in R®, which is orientable. In
general, if M is a 3-manifold in R®, oriented naturally, what can we say about
the induced orientation of 9M? It turns out that it is the orientation of M
that corresponds to the unit normal field to @M pointing outwards from the
3-manifold M. We give an informal argument here to justify this statement,
reserving a formal proof until a later section.

Given M, let a« : U — V be a coordinate patch on M belonging to the
natural orientation of M, about the point p of M. Then the map

(o 0 b)(x) = a1, 22,0)

gives the restricted coordinate patch on &M about p. Since dim M = 3,
which is odd, the induced orientation of @M is opposite to the one obtained
by restricting coordinate patches on M. Thus the normal field N = (p;n)
to OM corresponding to the induced orientation of M satisfies the condition
that the frame (—n,0a/821, 8a/Oz;) is right-handed.

On the other hand, since M is oriented naturally, det Da > 0. It follows
that (Jar/Ozs, 8 /dz1,00¢/Dz,) is right-handed. Thus —n and dor/dz; lie
on the same side of the tangent plane to M at p. Since da/8z;s points
into M, the vector n points outwards from M. See Figure 34.9.

Figure 34.9

EXAMPLE 5. Let M be a 2-manifold with non-empty boundary, in R3. If
M is oriented, let us give @M the induced orientation. Let N be the unit
normal field to M corresponding to the orientation of M; and let T be the
unit tangent field to M corresponding to the induced orientation of M.
What is the relationship between N and T'?
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Z2

Figure 34.10

We assert the following: Given N and T', for each p € M let W(p) be
the unit vector that is perpendicular to both N(p) and T (p), chosen so that
the frame (N(p), T(p), W(p)) is right-handed. Then W(p) is tangent to M
at p and points into M from 0 M.

(This statement is a more precise way of formulating the description usu-
ally given in the statement of Stokes’ theorem in calculus: “The relation be-
tween N and T is such that if you walk around M in the direction specified
by T, with your head pointing in the direction specified by N, then the man-
ifold M is on your left.” See Figure 34.10.)

To verify this assertion, let a : U — V be a coordinate patch on M about
the point p of @M, belonging to the orientation of M. Then the coordinate
patch oo b belongs to the induced orientation of M. (Note that dim M = 2,
which is even.) The vector Oa/dz, represents the velocity vector of the
parametrized curve « o b; hence by definition it points in the same direction
as the unit tangent vector 7.

The vector 301/32:2, on the other hand, is the velocity of a parametrized
curve that begins at a point p of M and moves into M as 1 increases.
Thus, by definition, it points into M from p. Now fa/dz; need not be
orthogonal to M. But we can choose a scalar A such that the vector w =
da/Oz2 + ADa/Bz; is orthogonal to Hax/Jz1 and hence to T. Then w also
points into M; set W(p) = (p;w/ ||w]|).

Finally, the vector N(p) = (p; n) is, by definition, the unit vector normal
to M at p such that the frame (n,da/8z;,da/0z2) is right-handed. Now

detn 8o/Oz, 0Oa/Oz;]=detln Oafbz, W],

by direct computation. It follows that the frame (N, T, W) is right-handed.
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EXERCISES

. Let M be an n-manifold in R®. Let «, 8 be coordinate patches on M

such that det Do > 0 and det DB > 0. Show that o and 8 overlap
positively if they overlap at all.

. Let M be a k-manifold in R"; let «, B be coordinate patches on M. Show

that if o and 3 overlap positively, so do awor and So 7.

. Let M be an oriented 1-manifold in R?, with corresponding unit tan-

gent vector field T. Describe the unit normal field corresponding to the
orientation of M.

. Let C be the cylinder in R® given by

C={(z,9,9) |+’ =1;0<z <1}.
Orient C by declaring the coordinate patch « : (0,1)> — C given by
ofu, v) = (cos 2wy, sin 27U, v)
to belong to the orientation. See Figure 34.11. Describe the unit normal

field corresponding to this orientation of C. Describe the unit tangent
field corresponding to the induced orientation of 8C.

Figure 34.11

5. Let M be the 2-manifold in R? pictured in Figure 34.12, oriented nat-

urally. The induced orientation of M corresponds to a unit tangent
vector field; describe it. The induced orientation of 3 M also corresponds
to a unit normal field; describe it.

. Show that if M is a connected orientable k-manifold in R™, then M

has precisely two orientations, as follows: Choose an orientation of M;
it consists of a collection of coordinate patches {a&;}. Let {8;} be an
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Figure 34.12

arbitrary orientation of M. Given x € M, choose coordinate patches «;

and B; about x and define A(x) = 1 if they overlap positively at x, and

A(x) = —~1 if they overlap negatively at x.

(a) Show that A(x) is well-defined, independent of the choice of a: and

j.

(b) Show that A is continuous.

(c) Show that Ais constant.

(d) Show that {83;} gives the opposite orientation to {a} if A is identi-
cally —1, and the same orientation if A is identically 1.

7. Let M be the 3-manifold in R® consisting of all x with 1 < ||x|| < 2.
Orient M naturally. Describe the unit normal field corresponding to the
induced orientation of O M.

8. Let B™ = B™(1) be the unit ball in R™, oriented naturally. Let the unit
sphere S™~} = @B™ have the induced orientation. Does the coordinate
patch o : Int B"~1 — §™~? given by the equation

(u) = (u,[1 - ful*T'/?)
belong to the orientation of $"~'? What about the coordinate patch

Blu) = (u,—[1 - [[ul’)/?)?
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§35. INTEGRATING FORMS OVER ORIENTED MANIFOLDS

Now we define the integral of a k-form w over an oriented k-manifold. The
procedure is very similar to that of §25, where we defined the integral of a
scalar function over a manifold. Therefore we abbreviate some of the details.

We treat first the case where the support of w can be covered by a single
coordinate patch.

Definition. Let M be a compact oriented k-manifold in R”. Let w be a
k-form defined in an open set of R” containing M. Let C = M N(Support w);
then C is compact. Suppose there is a coordinate patch a : U — V on M
belonging to the orientation of M such that C' C V. By replacing U by a
smaller open set if necessary, we can assume that U is bounded. We define
the integral of w over M by the equation

/ w:/ a*w.
M Int U

Here Int U = U if U is open in R¥, and Int U = U NHX if U is open in H*
but not in R¥.

First, we note that this integral exists as an ordinary integral, and hence
as an extended integral: Since & can be extended to a C'® map defined on
a set U’ open in R¥, the form a*w can be extended to a C® form on U".
This form can be written as hdz; A - -- Adz; for some C'° scalar function h

on U'. Thus
/ a*w:/ h,
Int U Int U

by definition. The function A is continuous on U and vanishes on U outside
the compact set @~!(C); hence h is bounded on U. If U is open in R¥, then
h vanishes near each point of Bd U. If U is not open in R¥, then h vanishes
near each point of Bd U not in JH*, a set that has measure zero in R*. In
either case, h is integrable over U and hence over Int U. See Figure 35.1.

Second, we note that the integral wa is well-defined, independent of
the choice of the coordinate patch a. The proof is very similar to that of
Lemma 25.1; here one uses the additional fact that the transition function is
orientation-preserving, so that the sign in the formula given in Theorem 33.1
i1s “plus.”
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Figure 35.1

Third, we note that this integral is linear. More precisely, if w and 7 have
supports whose intersections with M can be covered by the single coordinate
patch @ : U — V belonging to the orientation of M, then

/aw+bn:a/w+b 7.
M M M

This result follows at once from the fact that a* and flm y are linear.
Finally, we note that if —M denotes the manifold M with the opposite

orientation, then
/ w= —/ w.
-M M

This result follows from Theorem 33.1.
To define wa in general, we use a partition of unity.

Definition. Let M be a compact oriented k-manifold in R®. Let w be
a k-form defined in an open set of R containing M. Cover M by coordinate
patches belonging to the orientation of M; then choose a partition of unity
¢, ..., ¢ on M that is dominated by this collection of coordinate patches
on M. See Lemma 25.2. We define the integral of w over M by the equation

foo=tf e
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The fact that this definition agrees with the previous one when the support
of w is covered by a single coordinate patch follows from linearity of the earlier
integral and the fact that

wix) = 3 ¢ixw(x)

for each x € M. The fact that the integral is independent of the choice of the
partition of unity follows by the same argument that was used for the integral
Jis [ AV, The following is also immediate:

Theorem 35.1.  Let M be a compact oriented k-manifold in R™,
Let w,n be k-forms defined in an open set of R® containing M. Then

/M(aw+b77) = a/Mw + b/Mn.

If —M denotes M with the opposite orientation, then

[l -

This definition of the integral is satisfactory for theoretical purposes, but
not for computational purposes. As in the case of the integral fM f dV, the
practical way of evaluating fM w is to break M up into pieces, integrate over
each piece separately, and add the results together. We state this fact formally
as a theorem:

*Theorem 35.2. Let M be a compact oriented k-manifold in R™.
Let w be a k-form defined in an open set of R™ containing M. Suppose
that a; : A; — M;, fori =1,..., N, is a coordinate patch on M be-
longing to the orientation of M, such that A; is open in R* and M is
the disjoint union of the open sets My, ..., My of M and a set K of
measure zero in M. Then

/szgg[/l"a}‘w].

Proof. 'The proof is almost a copy of the proof of Theorem 25.4. Al-
ternatively, it follows from Theorems 25.4 and 36.2. We leave the details
toyou. 0O
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EXERCISES

1. Let M be a compact oriented k-manifold in R*. Let w be a k-form defined
in an open set of R™ containing M.

(a) Show that in the case where the set C = M N(Support w) is covered
by a single coordinate patch, the integral fM w is well-defined.

(b) Show that the integral fM w is well-defined in general, independent of
the choice of the partition of unity.

2. Prove Theorem 35.2.

3. Let S™! be the unit sphere in R", oriented so that the coordinate patch
a: A — 8" given by

a(u) = (u,[1 — ul’T’?)
belongs to the orientation, where A = Int B"™'. Let 7 be the n—1 form

n=Z(—1)“‘f.—d:cxA~~-Ac/l;.-/\---/\dz,,,

i=1

where fi(x) = zi/ ||x||™. The form 7 is defined on R™ — 0. Show that

[ aeo
sn—1
as follows:

(a) Let p: R™ — R" be given by
p(T1, oy Taz1, Tn) = (L1, ..oy Tno1, —Tn).
Let B = poa. Show that B : A — S™ ' belongs to the opposite

orientation of $"~'. [Hint: The map p: B® — B™ is orientation-
reversing.]

(b) Show that 3*n = —a*n; conclude that

/ 7= 2/ a’n.
sn-1 A

Jamn=s [ 10—y o
A A

{c) Show that
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*§36. A GEOMETRIC INTERPRETATION OF FORMS AND INTEGRALS

The notion of the integral of a k-form over an oriented k-manifold seems
remarkably abstract. Can one give it any intuitive meaning? We discuss here
how it is related to the integral of a scalar function over a manifold, which is
a notion closer to our geometric intuition.

First, we explore the relationship between alternating tensors in R” and
the volume function in R".

Theorem 36.1.  Let W be a k-dimensional linear subspace of R";
let (ay, ..., a;) be an orthonormal k-frame in W, and let f be an al-
ternating k-tensor on W. If (xi, ..., x) is an arbitrary k-tuple in W,
then

f(xl, Py xk) =€ V(xl, Peey xk)f(al, ey ak),

where € = 1. If the x; are independent, then € = +1 if the frames
(x1,-..,x¢) and (ay, ..., a;) belong to the same orientation of W and
€ = —1 otherwise.

If the x; are dependent, then V(x), ..., xz) = 0 by Theorem 21.3 and
the value of € does not matter.

Proof. Step 1. If W = RF, then the theorem holds. In that case, the
k-tensor f is a multiple of the determinant function, so there is a scalar ¢
such that for all k-tuples (x1, ..., x;) in R¥,

f(x1, ...y xi) = cdet{xy -+ xi].

If the x; are dependent, it follows that f vanishes; then the theorem holds
trivially. Otherwise, we have

J(x1, .., xi) = edetxy - xi] = eV (xa, ..., X1),

where €; = +1 if (x1, ..., x;) is right-handed, and €; = —1 otherwise. Simi-
larly,
flai, ..., ar) = cexV(ay, ..., ar) = ces,

where €3 = +1 if (a;, ..., a;) is right-handed and € = —1 otherwise. It
follows that

f(X], iy Xk) = (€1/€2)V(X1, ey xk)f(al, ceey ak),

where €; /€3 = +1if (x1, ..., x¢) and (a,, ..., a;) belong to the same orien-
tation of R¥, and €; /€2 = —1 otherwise.
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Step 2. The theorem holds in general. Given W, choose an orthogonal
transformation A : R* — R™ carrying W onto R¥* x 0. Let k : R* x 0 — W
be the inverse map. Since f is an alternating tensor on W, it is mapped to
an alternating tensor k* f on R¥ x 0. Since (h(x1), - .., h(xk)) is a k-tuple in
R* x 0, and (A(a1), ..., h(ar)) is an orthonormal k-tuple in R* x 0, we have
by Step 1,

(k" £)(h(x1), ..., B(x)) = €V (R(x1), .., h(xe))(K* ) (R(a1), ..., h(ar)),

where € = +1. Since V is unchanged by orthogonal transformations, we can
rewrite this equation as

f(xl, ...,xk)=€V(x1, ...,xk)f(al, ...,ak),

as desired. Now suppose the x; are independent. Then the h(x;) are inde-
pendent, and by Step 1 we have € = +1 if and only if (h(x1), .- ., h(x:)) and
(R(a1), ..., h(ar)) belong to the same orientation of R¥ x 0. By definition,
this occurs if and only if (x1, ..., Xx) and (ay, ..., ag) belong to the same
orientation of W. 0O

Note that it follows from this theorem that if (a;, ..., a;) and
(by, ..., by) are two orthonormal frames in W, then

f(al, ...,ak)=:l:f(b1, ...,bk),

the sign depending on whether they belong to the same orientation of w
or not.

Definition. Let M be a k-manifold in R?; let p € M. If M is oriented,
then the tangent space to M at p has a natural induced orientation, defined as
follows: Choose a coordinate patch a : U — V belonging to the orientation
of M about p. Let a(x) = p. The collection of all k-frames in T,(M) of
the form

(ac(x;ay), .-y Cu(x;2))

where (ay, ..., a;) is a right-handed frame in R¥, is called the natural orien-
tation of T,(M), induced by the orientation of M. It is easy to show it is
well-defined, independent of the choice of a.

Theorem 36.2. Let M be a compact oriented k-manifold in R*;

let w be a k-form defined in an open set of R® containing M. Let A be
the scalar function on M defined by the equation

A(p) = w(p) ((P;ay), ---» (P; 1)),
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where ((p;a,), ..., (P;a;)) is any orthonormal frame in the linear space
Tp(M) belonging to its natural orientation. Then X is continuous, and

/w:/AdV.
M M

Proof. By linearity, it suffices to consider the case where the support
of w is covered by a single coordinate patch a : U — V belonging to the
orientation of M. We have

a*w=hdz; A---ANdz,
for some scalar function k. Let a(x) = p. We compute h(x) as follows:
h(x) = (a"w)(x)((x;e1), - -, (x; )

= w(a(x)) (an(x;ey), ..., aul(x;e;))

= w(p)((p;0a/0z1), ..., (p; Da /D))

= £V (Da(x))A(p),
by Theorem 36.1. The sign is “plus” because the frame

((p;0a/dzy), ..., (p; 0a/Ozy))

belongs to the natural orientation of 7,(M) by definition. Now V(Da) # 0
because Da has rank k. Then since x = a~1(p) is a continuous function
of p, so is

A(p) = h(x)/V (Da(x)).
It follows that

/M,\ dV:/Im ea)V(Da)= /Im h

On the other hand,
/ w= / a’w= / h,
M Int U Int U

by definition. The theorem follows. [J

This theorem tells us that, given a k-form w defined in an open set about
the compact oriented k-manifold M in R®, there exists a scalar function A
(which is in fact of class C*) such that

/w:/ %
M M

299
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The reverse is also true, but the proof is a good deal harder:

One first shows that there exists a k-form w,, defined in an open set
about M, such that the value of w,(p) on any orthonormal basis for 7p(M)
belonging to its natural orientation is 1. Then if A is any C* function on M,

we have
/ AdV:/ Awy;
M M

thus the integral of A over M can be interpreted as the integral over M of
the form Aw,. The form w, is called a volume form for M, since

‘/va=./1‘w dV = v(M).

This argument applies, however, only if M is orientable. If M is not
orientable, the integral of a scalar function is defined, but the integral of a
form is not.

A remark on notation. Some mathematicians denote the volume form w,
by the symbol dV, or rather by the symbol dV. (See the remark on notation
in §22.) While it makes the preceding equations tautologies, this practice can
cause confusion to the unwary, since V' is not a form, and d does not denote
the differential operator in this context!

EXERCISE

1. Let M be a k-manifold in R®; let p € M. Let o and B be coordinate
patches on M about p; let a(x) = p = B(y). Let (a1,...,ax) be a
right-handed frame in R*. If & and B overlap positively, show that there
is a right-handed frame (b, ..., bi) in R* such that

a.(x;a;) = B.(y; b))

for each i. Conclude that if M is oriented, then the natural orientation
of Tp (M) is well-defined.
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§37. THE GENERALIZED STOKES' THEOREM

Now, finally, we come to the theorem that is the culmination of all our labors.
It is a general theorem about integrals of differential forms that includes the
three basic theorems of vector integral calculus—Green’s theorem, Stokes’
theorem, and the divergence theorem—as special cases.

We begin with a lemma that is in some sense a very special case of the
theorem. Let I* denote the unit k-cube in R¥;

I* =[0,1}F = [0,1] x - -- x [0,1].
Then Int I* is the open cube (0,1)%, and Bd I* equals I*¥ — Int I*.

Lemma 37.1. Letk > 1. Let n be a k—1 form defined in an open
set U of R¥ containing the unit k-cube I*. Assume that 7 vanishes at
all points of Bd I* except possibly at points of the subset (Int I*=1) x 0.

Then
/ dy=(-0* [ o,
Int Ik Int Jk=1

where b : I*~! — I* is the map
b(ul, ceey uk—l) = (Ul, ey 'U,k_l,O).
Proof. 'We use x to denote the general point of R, and u to denote the
general point of R¥~1. See Figure 37.1. Given j with 1 < j < k, let I; denote

the k — 1 tuple
L=01,...,7 ..., k).

Then the typical elementary k — 1 form in R* is the form

de;; =dzy A Adz; A Aday.

Because the integrals involved are linear and the operators d and b* are
linear, it suffices to prove the lemma in the special case

n= f d:l:f_,"
so we assume this value of 77 in the remainder of the proof.

Step 1. We compute the integral

/ dn.
Int 1%
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,, A

Figure 37.1

We have
d77 = df A d:l:]j

k
= (D> Dif dz;) Adzy,

i=1
= (-1 "Y(D;f)dz1 A+ N dzy.

Then we compute

[ = [ Dy
Int I* Int Ik

=(-1)7! /1k D;f

= (—1)j_1 / Djf(.’l?l,
velk-t Jr;el

Ik

Support 7

azk)

Chapter 7

by the Fubini theorem, where v = (Z1, ..., Zj, ..., Ti). Using the funda-
mental theorem of calculus, we compute the inner integral as

/IDjf(:cl,...,:ck)zf(:cl,...,1,...,:ck)—f(z1,...,0,...,:ck),
z;€

where the 1 and the 0 appear in the j*P place. Now the form 7, and hence
the function f, vanish at all points of Bd I* except possibly at points of the
open bottom face (Int /¥-1) x 0. If j < k, this means that the right side of

this equation vanishes; while if j = k, it equals

—f(.’l,‘l, fey :L‘k_l,O).
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We conclude the following:

0 if j<k,
Lo
Int I* (- f,,,_,(fob) if j=k.

Step 2. Now we compute the other integral of our theorem. The map
b : R¥~! — R* has derivative
I
Db = k-t .
0

Therefore, by Theorem 32.2, we have
b*(dz;;) = [det Db(1, ..., 7, ..., k)] dus A -+ Adug_y

0 if j<k,
dug A Adug_, if j=k.

We conclude that

0 if <Kk,
[
Int Jk-1 f[m Ik—l(fob) if ] =k

The theorem follows by comparing this equation with that at the end of
Step1. 0O

Theorem 37.2 (Stokes’ theorem). Letk > 1. Let M be a com-
pact oriented k-manifold in R"; give M the induced orientation if
OM is not empty. Let w be a k — 1 form defined in an open set of

R"containing M. Then
/dw:/ w
M aM

if OM is not empty; and f,, dw =0 if OM is empty.

Proof.  Step 1. We first cover M by carefully-chosen coordinate patches.
As a first case, assume that p € M — M. Choose a coordinate patch
a : U — V belonging to the orientation of M, such that U is open in R®
and contains the unit cube 7*, and such that a carries a point of Int I* to
the point p. (If we begin with an arbitrary coordinate patch a : U — V
about p belonging to the orientation of M, we can obtain one of the desired
type by preceding a by a translation and a stretching in R*.) Let W = Int I*,
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w

7
7
~___

]

Figure 37.2

and let Y = a(W). Then the map a : W — Y is still a coordinate patch
belonging to the orientation of M about p, with W = Int I* open in R¥. See
Figure 37.2. We choose this special patch about p.

As a second case, assume that p € OM. Choose a coordinate patch
a : U — V belonging to the orientation of M, such that U is open in H¥
and U contains I*, and such that a carries a point of (Int 7¥=1) x 0 to the
point p. Let

W = (Int I*) U ((Int I*~1) x 0),

and let Y = a(W). Then the map o : W — Y is still a coordinate patch
belonging to the orientation of M about p, with W open in H* but not open
in RE.

We shall use the covering of M by the coordinate patches & : W — Y
to compute the integrals involved in the theorem. Note that in each case, the
map « can be extended if necessary to a (> function defined on an open set
of R* containing I*.

Step 2. Since the operator d and the integrals involved are linear, it
suffices to prove the theorem in the special case where w is a k — 1 form such
that the set

C = M N (Support w)

can be covered by a single one of the coordinate patches a : W — Y. Since
the support of dw is contained in the support of w, the set M N (Support dw)
is contained in C, so it is covered by the same coordinate patch.

Let 77 denote the form a*w. The form 7 can be extended if necessary
(without change of notation) to a C> form on an open set of R¥ containing I®,



§37. The Generalized Stokes’ Theorem 305

Furthermore, 7 vanishes at all points of Bd I* except possibly at points of
the bottom face (Int I*~!) x 0. Thus the hypotheses of the preceding lemma
are satisfied.

Step 3. We prove the theorem when C is covered by a coordinate patch
a: W — Y of the type constructed in the first case. Here W = Int I* and Y
is disjoint from @M. We compute the integrals involved. Since a*dw =
da*w = dn, we have

/ dw:/ o*dw .—./ dn = (—1)"/ b*n.
M Int I* Int I* Int [%=1

Here we use the preceding lemma. In this case, the form 7 vanishes outside
Int I*. In particular,  vanishes on I*~1x0, so that b*n = 0. Then Jyydw=0.

The theorem follows. If @M is empty, this is the equation we wished to
prove. If OM is non-empty, then the equation

/dw:/ w
M oM

holds trivially; for since the support of w is disjoint from M, the integral
of w over @M vanishes.

Step 4. Now we prove the theorem when C is covered by a coordinate
patch a : W — Y of the type constructed in the second case. Here W is
open in H* but not in R¥, and Y intersects M. We have Int W = Int I*.

We compute as before

/dw:/ dn = (=1)* bn.
M Int J* Int Tk=1

We next compute the integral [,, w. The set dM N (Support w) is
covered by the coordinate patch

B=aob:Int I*! Y NOM

on M, which is obtained by restricting @. Now 3 belongs to the induced
orientation of @M if k is even, and to the opposite orientation if k is odd. If
we use [ to compute the integral of w over M, we must reverse the sign of
the integral when k is odd. Thus we have

S = P

Since B*w = b*(a*w) = b*7, the theorem follows. [
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We have proved Stokes’ theorem for manifolds of dimension k greater
than 1. What happens if k = 17 If M is empty, there is no problem; one
proves readily that | M dw = 0. However, if 9M is non-empty, we face the
following questions: What does one mean by an “orientation” of a 0-manifold,
and how does one “integrate” a 0-form over an oriented 0-manifold?

To see what form Stokes’ theorem should take in this case, we consider
first a special case.

Definition. Let M be a I-manifold in R*. Suppose there is a one-to-one
map « : [a,b] — M of class C*, carrying [a,b] onto M, such that Da(t) # 0
for all t. Then we call M a (smooth) arc in R®. If M is oriented so that
the coordinate patch a|(a,b) belongs to the orientation, we say that p is the
initial point of M and q is the final point of M. See Figure 37.3.

el

L

P

Figure 37.3

*Theorem 37.3. Let M be a 1-manifold in R"; let f be a 0-form
defined in an open set about M. If M is an arc with initial point p and
final point q, then

/ df = f(a) - f(p).
M

Proof. Let a : [a,b] = M be as in the preceding definition. Then
a:(a,b) = M — p — q is a coordinate patch covering all of M except for a
set of measure zero. By Theorem 35.2,

J = /(m o*(df)-
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Now

o*(df) = d(f oa) = D(f o a) dt,

where t denotes the general point of R. Then
| = [ Difoa)=r(p) - flata),
(a,b) (a,b)
by the fundamental theorem of calculus. O

This result provides a guide for formulating Stokes’ theorem for 1-mani-
folds:

Definition. A compact 0-manifold N in R® is a finite collection of
points {xi, ..., Xm} of R*. We define an orientation of N to be a func-
tion € mapping N into the two-point set {—1,1}. If f is a O-form defined
in an open set of R" containing N, we define the integral of f over the
oriented manifold N by the equation

Lf=§dMﬂm.

Definition. If M is an oriented 1-manifold in R® with non-empty bound-
ary, we define the induced orientation of M by setting e(p) = —1, for
p € OM, if there is a coordinate patch & : U — V on M about p belonging
to the orientation of M, with U open in H!. We set ¢(p) = +1 otherwise.
See Figure 37.4.

€e=+41

Figure 37.4

With these definitions, Stokes’ theorem takes the following form; the proof
is left as an exercise.
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Theorem 37.4 (Stokes’ theorem in dimension 1). Let M be a
compact oriented 1-manifold in R®; give OM the induced orientation
if M is not empty. Let f be a 0-form defined in an open set of R"

containing M. Then
[ar=] 1
M oM

if OM is not empty; and [, df =0 if OM is empty. O

EXERCISES

1. Prove Stokes’ theorem for 1-manifolds. [Hint: Cover M by coordinate
patches, belonging to the orientation of M, of the form « : W -Y,
where W is one of the intervals (0,1) or [0,1) or (-1,0]. Prove the theorem
when the set M N (Support f) is covered by one of these coordinate

patches.]
2. Suppose there is an n — 1 form 77 defined in R™ — 0 such that dn = 0 and

/ n#0.
sn—l

Show that 7 is not exact. (For the existence of such an 7, see the exercises
of §30 and the exercises of either §35 or §38.)

3. Prove the following:

Theorem (Green’s theorem). Let M be a compact 2-manifold
in R?, oriented naturally; give OM the induced orientation. Let
P de + Q dy be a 1-form defined in an open sel of R? about M.
Then

/ Pd:c+Qdy=/(D1Q—D2P) dz Ady.
oM M

4. Let M be the 2-manifold in R® consisting of all points x such that
4(z1)? + (22)° + 4(z3)° =4 and 22 >0.
Then OM is the circle consisting of all points such that
(£1)* + (z3)° =1 and z,=0.
See Figure 37.5. The map

1/2

a(uvv) = (u, 2[1 - u2 - Uz] vv)v

for u2 + v?> < 1, is a coordinate patch on M that covers M — M.
Orient M so that & belongs to the orientation, and give M the induced
orientation.
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Figure 37.5

(a) What normal vector corresponds to the orientation of M? What
tangent vector corresponds to the induced orientation of M?

(b) Let w be the 1-form w = 2, dz; + 32, drs. Evaluate fGM w directly.
(c) Evaluate f dw directly, by expressing it as an integral over the unit

disc in the (u, v) plane.

5. The 3-ball B3(r) is a 3-manifold in R?; orient it naturally and give S*(r)
the induced orientation. Assume that w is a 2-form defined in R® — 0 such

that
[ w=axem,
52(r)
for each r > 0.

(a) Given 0 < ¢ < d, let M be the 3-manifold in R® consisting of all x
with ¢ < ||x|| € d, oriented naturally. Evaluate fM dw.

(b) If dw = 0, what can you say about a and b?
(c) If w = dn for some 77 in R® — 0, what can you say about a and b?

6. Let M be an oriented k+ £ 4 1 manifold without boundary in R™. Let w
be a k-form and let i be an {-form, both defined in an open set of R™
about M. Show that

/w/\dn:a/ dwAn
M M

for some a, and determine a.
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*§38. APPLICATIONS TO VECTOR ANALYSIS

In general, we know from the discussion in §31 that differential forms of order k
can be interpreted in R™ in certain cases as scalar or vector fields, namely when
k=0,1,n—1, or n. We show here that integrals of forms can similarly be so
interpreted; then Stokes’ theorem can also in certain cases be interpreted in
terms of scalar or vector fields. These versions of the general Stokes’ theorem
include the classical theorems of the vector integral calculus.

We consider the various cases one-by-one.

The gradient theorem for 1-manifolds in R”

First, we interpret the integral of a 1-form in terms of vector fields. If F’
is a vector field defined in an open set of R?, then F' corresponds under the
“translation map” a; to a certain 1-form w. (See Theorem 31.1.) It turns out
that the integral of w over an oriented l-manifold equals the integral, with
respect to 1-volume, of the tangential component of the vector field F'. That
is the substance of the following lemma:

Lemma 38.1. Let M be a compact oriented 1-manifold in R";
let T be the unit tangent vector to M corresponding to the orientation.

Let
F(x) = (x; f(x)) = (x; Zfi(x)ei)
be a vector field defined in an open set of R® containing M; it corre-
sponds to the 1-form
w= Z fi dzx;.

/sz/M(F,T) ds.

Here we use the classical notation “ds” rather than “dV” to denote the
integral with respect to 1-volume (arc length), simply to make our theorems
resemble more closely the classical theorems of vector integral calculus.

Note that if one replaces M by —M, then the integral [, w changes
sign. This replacement has the effect of replacing T by —T'; thus the integral
Ju(F,T) ds also changes sign.

Then

Proof. We give two proofs of this lemma. The first relies on the results
of §36; the second does not.

First proof. By Theorem 36.2, we have

/w:/ Ads,
M M
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where A(p) is the value of w(p) on an orthonormal basis for 7Tp(M) that
belongs to the natural orientation of this tangent space. In the present case,
the tangent space is 1-dimensional, and T'(p) is such an orthonormal basis.
Let T(p) = (p;t). Since w = T f; du;,

w(p) (P;t) = Y filp)ti(p)-

Thus
A(p) = (F(p), T(p)),

and the lemma follows.

Second proof. Since the integrals involved are linear in w and F, re-
spectively, it suffices to prove the lemma in the case where the set

C = M N (Support w)

lies in a single coordinate patch a : U — V belonging to the orientation of M.
In that case, we simply compute both integrals. Let ¢ denote the general point
of R. Then

a’w=> (fioa) da
=1

:Z(f,-oa)(Da;) dt

i=1
= (foa, Da) dt.
It follows that

On the other hand,

/(F,T) ds-_—/ (Foa,Toa) V(Da)
M Int U
= [ (foa,Da/|Dal))-V(Da)

= [ (foaDa),

since

V(Da) = [det(Da™™ - Da)]'/? = || Da].

The lemma follows. O
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Theorem 38.2 (The gradient theorem). Let M be a compact
1-manifold in R*; let T be a unit tangent vector field to M. Let f be a
C* function defined in an open set about M. If M is empty, then

/ (grad f,T) ds = 0.
M

If OM consists of the points x1, ..., Xm, let € = —1 if T points into M
at x; and €; = +1 otherwise. Then

/M (grad f,T) ds=)_ & f(x:).

i=1

Proof. The 1-form df corresponds to the vector field grad f, by Theo-
rem 31.1. Therefore

[ dr= [ (grad £,7) as,
M M

by the preceding lemma. Our theorem then follows from the 1-dimensional
version of Stokes’ theorem. [

The divergence theorem for n—1 maaifolds in R”

Now we interpret the integral of an n — 1 form, over an oriented 7 — 1
manifold M, in terms of vector fields. First, we must verify a result stated
earlier, the fact that an orientation of M determines a unit normal vector
field to M. Recall the following definition from §34:

Definition. Let M be an oriented # — 1 manifold in R*. Given p € M,
let (p;n) be a unit vector in 7(R™) that is orthogonal to the n—1 dimensional
linear subspace Tp(M). If @ : U — V is a coordinate patch on M about p
belonging to the orientation of M with a(x) = p, choose n so that

Oa da
(n,'fm(x), r a_x,:(x))
is right-handed. The vector field N(p) = (p;n(p)) is called the unit normal
field corresponding to the orientation of M.
We show N (p) is well-defined, and of class C'™. To show it is well-defined,
let 3 be another coordinate patch about p, belonging to the orientation of M.

Let ¢ = 37! o« be the transition function, and let g(x) = y. Since &« = fog,

Da(x) = DA(y) - Dy(x).
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Then for any v € R"?, we have the equation
1 0
[v Da(x)]=[v DBA(y)]
0 Dg(x)
(Here Do and D have size n by n — 1, so each of these three matrices has
size n by n.) It follows that

det[v Da(x)] =det[v Dpg(y)]- det Dg(x).
Since det Dg > 0, we conclude that [v Da(x)] has positive determinant if
and only if [v = Dg(y)] does.

To show that IV is of class ('™, we obtain a formula for it. As motivation,
let us consider the case n = 3:

EXAMPLE 1. Given two vectors a and b in R®, one learns in calculus that
their cross product ¢ = a x b is perpendicular to both, that the frame (c, a,b)
is right-handed, and that ||c|| equals V(a, b). The vector ¢ is, of course, the
vector with components

az b a b a b
clzdet[ ], CQ-':—det[ ], 03=det[ ]
as b3 as b3 az b2

It follows that if M is an oriented 2-manifold in R®>, and if a: U — V is a
coordinate patch on M belonging to the orientation of M, and if we set

o Ja 9 Ja
- 8:1:1 81‘2’
then the vector n = ¢/ |c|| gives the corresponding unit normal to M. See
Figure 38.1.
o

D

=
-

Figure 38.1
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There is a formula similar to the cross product formula for determining n
in general, as we now show.

Lemma 38.3. Given independent vectors x,,...,X,.; in R,
let X be the n by n —1 matriz X =[x, --+ X,-1], and let c be the vector
¢ = Xc;e;, where

¢ = (=1)y"tdet X(1,...,%, ..., m).

The vector c has the following properties:
(1) ¢ is non-zero and orthogonal to each x;.
(2) The frame (c,xy, ..., Xn-1) 15 right-handed.
3) llell = V(X).

Proof. We begin with a preliminary calculation. Let x;, ..., x,_; be
fixed. Given a € R®, we compute the following determinant; expanding by
cofactors of the first column, we have:

n
detla x; -+ xp—1] = Z ai(-1)"tdet X(1,...,7,...,n)

i=1

= (a,c).
This equation contains all that is needed to prove the theorem.

(1) Set a = x;. Then the matrix [ax; --- x,-1] has two identical columns,
so its determinant vanishes. Thus (x;,¢) = 0 for all ¢, so ¢ is orthogonal to
each x;. To show ¢ # 0, we note that since the columns of X span a space
of dimension n — 1, so do the rows of X. Hence some set consisting of n — 1
rows of X is independent, say the set consisting of all rows but the ¢**. Then
¢; # 0; whence ¢ # 0.

(2) Set a = c. Then

detfc x; -+ Xn_1] = (c,¢) = [|c||* > 0.

Thus the frame (¢, Xy, ..., Xn—1) is right-handed.

(3) This equation follows at once from Theorem 21.4. Alternatively, one
can compute the matrix product

fleli> 0
[C X3 - xn_I]tr . [c b IR xn_l] =
0 Xv.X
Taking determinants and using the formula in (2), we have

llell® = llell?V (X)?.
Since ||c|| # 0, we conclude that [|c]| = V(X). O
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Corollary 38.4. If M is an oriented n — 1 manifold in R*, then
the unit normal vector N(p) corresponding to the orientation of M is
a C* function of p.

Proof. Ifa:U —V is a coordinate patch on M about p, let
ci(x) = (=1)"'det Da(l, ..., 7, ..., n)(x)
for x € U, and let ¢(x) = X¢;(x)e;. Then for all p € V, we have

N(p) = (p;c(x)/lle(x)ll),
where x = a=!(p); this function is of class C* as a function of p. O

Now we interpret the integral of an n — 1 form in terms of vector fields.
If G is a vector field in R™, then G corresponds under the “translation map”
Bn-1 to a certain n — 1 form w in R™. (See Theorem 31.1.) It turns out that
the integral of w over an oriented n—1 manifold M equals the integral over M,
with respect to volume, of the normal component of the vector field G. That
is the substance of the following lemma:

Lemma 38.5. Let M be a compact oriented n ~ 1 manifold in R®;
let N be the corresponding unit normal vector field. Let G be a vector
field defined in an open set U of R® containing M. If we denote the
general point of R® by y, this vector field has the form

G(y) = (v:9(y)) = (¥; £gi(y)e:);
it corresponds to the n— 1 form
w= Z(—l)i_lgi dy /\---A@,-A---Ady,..
i=1

Then
/w:/ (G, N) av.
M M

Note that if we replace M by —M, then the integral wa changes sign.
This replacement has the effect of replacing N by —N, so that the integral
Ju(G,N) dV also changes sign.

Proof.  We give two proofs of this theorem. The first relies on the results
of §36 and the second does not.
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First proof. By Theorem 36.2, we have

/w:/z\dV,
M M

where A(p) is the value of w(p) on an orthonormal basis for 7,(M) that
belongs to the natural orientation of this tangent space. We show that A=
(G, N), and the proof is complete.

Let (p;a1), .-, (P;an—1) be an orthonormal basis for Tp(M) that be-
longs to its natural orientation. Let A be the matrix A = [a; --- a,.1); and
let ¢ be the vector ¢ = Xc;e;, where

C; = (—l)i_l detA(l, . .,?, ey n).

By the preceding lemma, the vector c is orthogonal to each a;, and the frame
(c,ay, ..., ay—1) is right-handed, and

Hc|| = V(A) = [det(A" . A)]1/2 — [det In—1]1/2 - 1.

Then N = (p;c) is the unit normal to M at p corresponding to the orientation
of M. Now by Theorem 27.7, we have

dy1A~--A@iA---Adyn((p;a1),...,(p;an_l)):detA(l,...,’i,...,n).

Then

n

AP) = Y (=) 'g:(p)det A(L, ..., 3, ., m)

i=1

= Z 9:i(p) - ;-

Thus A = (G, N), as desired.

Second proof. Since the integrals involved in the statement of the the-
orem are linear in w and G, respectively, it suffices to prove the theorem in
the case where the set

C = M N (Support w)

lies in a single coordinate patch a : U — V belonging to the orientation of M.
We compute the first integral as follows:

/ w:/ a*w
M Int U

:/ [zn:(—l)“l(g,-oa)detDa(l,...,'i,...,n)],
Int U

i=1
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by Theorem 32.2. To compute the second integral, set ¢ = Ec;e;, where
¢ = (—1)"'det Da(l,...,7%,..., n).

If N is the unit normal corresponding to the orientation, then as in the pre-
ceding corollary, N (a(x)) = (a(x); e(x)/ ||c(x)||). We compute

/(G,N) @V=[ (Goa,Noa) V(Da)
M Int U

= / (goa,c) since ||c|| =V (Da),
Int U

- /It I (gioa) (=1 det Da(l, ..., 5, .., ),

i=1
The lemma follows. O

Now we interpret the integral of an n-form in terms of scalar fields. The
interpretation is just what one might expect:

Lemma 38.6. Let M be a compact n-manifold in R", oriented
naturally. Letw = h dz, A---Adz, be an n-form defined in an open set
of R* containing M. Then h is the corresponding scalar field, and

/ w= h dV.
M M

Proof.  First proof. We use the results of §36. We have

/w://\dV,
M M

where A is obtained by evaluating w on an orthonormal basis for 7,(M) that
belongs to its natural orientation. Now a belongs to the orientation of M
if det Dar > 0; thus the natural orientation of 7,(M) consists of the right-
handed frames. The usual basis for 7,(M ) = 7,(R") is one such frame, and
the value of w on this frame is A.

Second proof. It suffices to consider the case where the set
M N (Support w) is covered by a coordinate patch o : U — V belonging
to the orientation of M. We have by definition

/w:/ a*w:/ (hoa)det Da,
M Int U Int U

/Mth=/lntU(hoa)V(Da).

317
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Now V(Da) = | det Da| = det Da, since a belongs to the natural orientation
of M. O

We note that the integral [,, & dV in fact equals the ordinary integral
of h over the bounded subset M of R*. Forif A= M — M, then A is open
in R”, and the identity map i : A — A is a coordinate patch on M, belonging
to its natural orientation, that covers all of M except for a set of measure
zero in M. By Theorem 25.4,

/Mth=/A(hoi)V(Di)=/Ah.

The latter is an ordinary integral; it equals fM h because M has measure
zero in R™.

We now examine, for an n-manifold M in R”, naturally oriented, what
the induced orientation of OM looks like. We considered the case n = 3 in
Example 4 of §34. A result similar to that one holds in general:

Lemma 38.7. Let M be an n-manifold in R*. If M is oriented
naturally, then the induced orientation of OM corresponds to the unit
normal field N to OM that points outwards from M at each point of OM.

The inward normal to OM at p is the velocity vector of a curve that
begins at p and moves into M as the parameter value increases. The outward
normal is its negative.

Proof. Let a:U — V be a coordinate patch on M about p belonging
to the orientation of M. Then det Da > 0. Let b: R*~! — R" be the map

b((l)l, veey (L',._l) = ((El, ceey (IIn_l,O).

The map ag = aob is a coordinate patch on M about p. It belongs to the
induced orientation of @M if n is even, and to its opposite if n is odd. Let N
be the unit normal field to &M corresponding to the induced orientation of

OM:let N(p) = (p;n(p)). Then
det[(-1)"n  Dap} > 0,

which implies that

det[Dag n] = det[gaji1 afa - n] < 0.
On the other hand, we have
Oa Oa Oa
d = det[— — .
et Da = de [8:1:1 . aw,.] >0
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The vector da [0z, is the velocity vector of a curve that begins at a point of
OM and moves into M as the parameter increases. Thus n is the outward
normal to M at p. 0O

Theorem 38.8 (The divergence theorem). Let M be a compact
n-manifold in R®. Let N be the unit normal vector field to M that
points outwards from M. If G is a vector field defined in an open set of
R” containing M, then

/M (div G) aV = /a (G ) V.

Here the left-hand integral involves integration with respect to n-volume,
and the right-hand integral involves integration with respect to n—1 volume.

Proof. Given G, let w = (3,-1G be the corresponding n — 1 form.
Orient M naturally and give M the induced orientation. Then the normal
field N corresponds to the orientation of M, by Lemma 38.7, so that

/ w= [ (G, Ny av,
oM

oM

by Lemma 38.5. According to Theorem 31.1, the scalar field div G corresponds
to the n-form dw; that is, dw = (div G)dz; A--- Adz,. Then Lemma 38.6
implies that

/ dw= [ (div @) dV.
M M
The theorem follows from Stokes’ theorem. O
In R3, the divergence theorem is sometimes called Gauss’ theorem.

Stokes’ theorem for 2-manifolds in R3

There is one more situation in which we can translate the general Stokes’
theorem into a theorem about vector fields. It occurs when M is an oriented
2-manifold in R3.

Theorem 38.9 (Stokes’ theorem—classical version). Let M be
a compact orientable 2-manifold in R3. Let N be a unit normal field
to M. Let F be a C* vector field defined in an open set about M. If 9M
is empty, then

/ (curl F,N) aV = 0.
M

319



320 stokes' Theorem Chapter 7

IfOM is non-empty, let T be the unit tangent vector field to OM chosen
so that the vector W(p) = N(p) x T(p) points into M from OM. Then

/mmRNhW=/(Rnd&
M aM

Proof. Given F, let w = a1 F be the corresponding 1-form. Then
according to Theorem 31.2, the vector field curl F' corresponds to the 2-form
dw. Orient M so that N is the corresponding unit normal field. Then by

Lemma 38.5,
/ dw:/ (curl F,N) dV.
M M

On the other hand, if M is non-empty, its induced orientation corresponds to
the unit tangent field T'. (See Example 5 of §34.) It follows from Lemma 38.1

that
/ w:/(ﬂﬂd&
oM oM

The theorem now follows from Stokes’ theorem. [

EXERCISES

1. Let G be a vector field in R* — 0. Let S?(r) be the sphere of radius 7 in
R® centered at 0. Let N, be the unit normal to S?(r) that points away
from the origin. If div G(x) = 1/||x||, and if 0 < ¢ < d, what can you
say about the relation between the values of the integral

/ (G,N,) aV
S%(r)

for r=cand r =d?
2. Let G be a vector field defined in A = R” — 0 with div G =0 in A.
(a) Let M; and M: be compact n-manifolds in R", such that the origin

is contained in both M; — OM; and M, — 9 M>. Let N; be the unit
outward normal vector field to M, for i =1, 2. Show that

(G,N))dV = | (G, N,) aV.

My My

[Hint: Consider first the case where M; = B"(¢) and is contained
in M, — OM,. See Figure 38.2.]
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Figure 38.2

(b) Show that as M ranges over all compact n-manifolds in R™ for which
the origin is not in M, the integral

/ @M a,

where NN is the unit normal to M pointing outwards from M, has
only two possible values.

. Let G be a vector fieldin B=R* —p —q withdivG=0in B. As M

ranges over all compact n-manifolds in R™ for which p and q are not in
OM, how many possible values does the integral

/aM<G’ Ny dVv

have? (Here IV is the unit normal to M pointing outwards from M.)

. Let 7 be the n — 1 form in A = R™ — 0 defined by the equation

7)=Z(—1)‘"’fi dzi A AdZi A~ AdTy,

i=1

where fi(x) = z:/||x||™. Orient the unit ball B" naturally, and give
S™~! = §B™ the induced orientation. Show that

/ n=v(S").
sn—1

(Hint: If G is the vector field corresponding to 7, and N is the unit
outward normal field to S®™*, then (G, N) = 1.]
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5. Let S be the subset of R® consisting of the union of:
(i) the z-axis,
(ii) the unit circle 22 +y* = 1,2 =0,
(iii) the points (0,y,0) with y > 1.
Let A be the open set R® — S of R®. Let C1,C3, D1, Dy, D3 be the

oriented 1-manifolds in A that are pictured in Figure 38.3. Suppose that
F is a vector field in A, with curl F = 0 in A, and that

(F,T)ds=3 and (F,Tyds=1.
cy Ca

What can you say about the integral

(F,T) ds
D;

for ¢ = 1,2,3? Justify your answers.

A

fg\ Sy
s

U
D

S

Figure 38.3



Closed Forms and Exact Forms

In the applications of vector analysis to physics, it is often important to know
whether a given vector field F' in R® is the gradient of a scalar field f. If
it is, F' is said to be conservative, and the function f (or sometimes its
negative) is called a potential function for F. Translated into the language
of forms, this question is just the question whether a given 1-form w in R2 is
the differential of a 0-form, that is, whether w is exact.

In other applications to physics, one wishes to know whether a given
vector field G in R3 is the curl of another vector field F. Translated into the
language of forms, this is just the question whether a given 2-form w in R3 is
the differential of a 1-form, that is, whether w is exact.

We study here the analogous question in R®. If w is a k-form defined
in an open set A of R™, then a necessary condition for w to be exact is the
condition that w be closed, i.e., that dw = 0. This condition is not in general
sufficient. We explore in this chapter what additional conditions, either on A
or on both A and w, are needed in order to ensure that w is exact.
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THE POINCARE LEMMA

Let A be an open set in R®. We show in this section that if A satisfies

a certain condition called star-convezity, then any closed form w on A is

automatically exact. This result is a famous one called the Poincaré lemma.
We begin with a preliminary result:

Theorem 39.1 (Leibnitz’s rule). Let Q be a rectangle in R"; let
f:Qx[a,b] — R be a continuous function. Denote f by f(x,t) forx € Q
and t € [a,b]. Then the function

t=b

F(x) = f(x,1)

t=a
is continuous on Q. Furthermore, if 0f[0z; is continuous on Q x [a,b],

then oOF .y
g‘g(x) =/t g‘ﬁ(x,t)-

=a

This formula is called Leibnitz’s rule for differentiating under the
integral sign.

Proof. Step 1. We show that F is continuous. The rectangle @ x [a,b]
is compact; therefore f is uniformly continuous on @ x [a,b]. That is, given
€ > 0, there is a & > 0 such that

[f(x1,21) — f(xo0,t0)] < € whenever |(x1,%) — (x0,0)| < é.

It follows that when |x; — xg| < 6,

t=b
IF(x1) - F(xo)l < / 0t = f(xot)] < e(b-a).

Continuity of F follows.

Step 2. In calculating the integral and derivatives involved in Leibnitz’s
rule, only the variables z; and ¢ are involved; all others are held constant.
Therefore it suffices to prove the theorem in the case where n = 1 and @ is
an interval [¢,d] in R.

Let us set, for z € [¢,d],

t

=b
G(z) = D, f(z,1).

t=a
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We wish to show that F’(2) exists and equals G(z). For this purpose, we
apply (of all things) the Fubini theorem. We are given that D, f is continuous
on [¢,d] x [a,b]. Then

[ew= [ o

R

t=b
:[ [f(zoyt) — flc, )]

= F(zo) - F(c);

the second equation follows from the Fubini theorem, and the third from the
fundamental theorem of calculus. Then for z € [c,d], we have

/, G = F(z) - F(c).

Since G is continuous by Step 1, we may apply the fundamental theorem of
calculus once more to conclude that

G(z)= F'(z). O

We now obtain a criterion for determining when two closed forms dif-
fer by an exact form. This criterion involves the notion of a differentiable
homotopy.

Definition. Let A and B be open sets in R® and R™, respectively;
let g,h : A — B be C*™ maps. We say that g and h are differentiably
homotopic if there is a ('™ map H : A x I — B such that

H(x,0)=g(x) and H(x,1)=h(x)

for x € A. The map H is called a differentiable homotopy between ¢
and h.

For each ¢, the map x — H(x,t) is a C'* map of A into B; if we think
of t as “time,” then H gives us a way of “deforming” the map ¢ into the
map h, as t goes from 0 to 1.
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Theorem 39.2. Let A and B be open sets in R* and R™, respec-
tively. Let g,h : A — B be C® maps that are differentiably homotopic.
Then there is a linear transformation

P Q¥1(B) — QF(A),
defined for k > 0, such that for any form n of order k > 0,
dPn+Pdn=h'n—g'n,
while for a form f of order 0,
Pdf =h*f-g"f.

This theorem implies that if 7 is a closed form of positive order, then h*7
and g*7 differ by an exact form, since h*n — g*n = dPn if 1 is closed. On
the other hand, if f is a closed 0-form, then A*f — g* f = 0.

Note that d raises the order of a form by 1, and P lowers it by 1. Thus
if  has order k > 0, all the forms in the first equation have order k; and all
the forms in the second equation have order 0. Of course, P f is not defined
if f is a O-form.

Proof. Step 1. We consider first a very special case. Given an open
set A in R?, let U be a neighborhood of A x I in R**! andlet a,8: A —- U

be the maps given by the equations
a(x) = (x,0) and B(x) = (x,1).

(Then a and 3 are differentiably homotopic.) We define, for any k + 1 form 5
defined in U, a k-form P7 defined in A, such that

dPn+ Pdyp=p("n-a'n iforder >0,

(*)
Pdf =p*f—a*f iforder f=0.

To begin, let x denote the general point of R?, and let ¢ denote the general
point of R. Then dz,, ..., dz,, dt are the elementary 1-forms in R**!, If ¢
is any continuous scalar function in A x I, we define a scalar function Zg on A

by the formula
t=1

(Zg)(x) = / g(x,1).

i=
Then we define P as follows: If k > 0, the general k + 1 form 7 in R"*! can
be written uniquely as

n:Zf] d(l)]-i-zgj d(l?]/\dt.
(] 7]
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Here I denotes an ascending k + 1 tuple, and J denotes an ascending k-tuple,
from the set {1, ..., n}. We define P by the equation

Pn=Y" P(fidz;)+)_ P(gs de; Adt),
{r] V1

where
P(f[ d(l)[) =0 and P(gJ d(l)] /\dt) = (—l)k(IgJ) d(l?J.

Then Pn is a k-form defined on the subset A of R™.

Linearity of P follows at once from the uniqueness of the representation
of n and linearity of the integral operator Z.

To show that Pn is of class C'*°, we need only show that the function Zg
is of class C'®°; and this result follows at once from Leibnitz’s rule, since g is
of class C'°.

Note that in the special case k = 0, the form 7 is a 1-form and is written

n=Y_ fide; +gdt;

i=1

in this case, the tuple J is empty, and we have
Pnp=0+ P(g dt) = Ig.

Although the operator P may seem rather artificial, it is in fact a rather
natural one. Just as d is in some sense a “differentiation operator,” the
operator P is in some sense an “integration operator,” one that “integrates 7
in the direction of the last coordinate.” An alternate definition of P that
makes this fact clear is given in the exercises.

Step 2. We show that the formulas
P(fde)=0 and P(g dey Adt) = (—1)(Zg) dz,

hold even when [ is an arbitrary k + 1 tuple, and J is an arbitrary k-tuple,
from the set {1, ..., n}. The proof is easy. If the indices are not distinct, then
these formulas hold trivially, since dz; = 0 and dz; = 0 in this case. If the
indices are distinct and in ascending order, these formulas hold by definition.
Then they hold for any sets of distinct indices, since rearranging the indices
changes the values of dzy and dz; only by a sign.
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Step 3. We verify formula (*) of Step 1 in the case k = 0. We have

P(df) = P(Z of d ,)+P(af dt)

=0+ (- 1)°z(af)

= fo ﬂ - f o
= ﬂ‘f - a*f ’
where the third equation follows from the fundamental theorem of calculus.

Step 4. We verify formula (*) in the case k > 0. Note that because &
is the map a(x) = (x,0), then

o' (dz;) =da; =dz; for 1=1,...,mn,
o*(dt) = dayyy = 0.

A similar remark holds for 8*.

Now because d and P and a* and [3* are linear, it suffices to verify our
formula for the forms f dzy and ¢ dzj A dt. We first consider the case
7 = f dz;. Let us compute both sides of the equation. The left side is

dPn + Pdn = d(0) + P(dn)

af

Edt A d:l?l)

= [Z P(-aa%d:vj Adzp)] + P(
j=1 !

=04 (1)1 P( fd:z:; A dt) by Step 2,
2P ey
=[fof - foaldz,.

The right side of our equation is
B'n-a*n=(foB)B"(der) - (f o o’ (da1)
= [foﬂ— foa]d:z:,.

Thus our result holds in this case.



839. The Poincaré Lemma 329

We now consider the case when 7 = g dzy Adt. Again, we compute both
sides of the equation. We have

(**) d(Pn) = d[(-1)*(Zg) dzJ)]
= (—l)k Z DJ(Ig) d.’l?j A dIL‘J.
j=1

On the other hand,
n
dn=> (D;g) dz; Adz; Ndt+ (Dni19) dt Adzs Adt,
j=1
so that by Step 2,
n
(++4) P(dn) = (-1)**' 3" (D, g) da; Adz,.
ji=1
Adding (**) and (* * ) and applying Leibnitz’s rule, we see that
d(Pn) + P(dn) = 0.
On the other hand, the right side of the equation is
B*(g dxy Adt)— o*(g dzj Adt) =0,

since 3*(dt) = 0 and a*(dt) = 0. This completes the proof of the special case
of the theorem.

Step 5. We now prove the theorem in general. We are given C'® maps
g,h : A — B, and a differentiable homotopy H : A x I — B between
them. Let &,3: A — A x I be the maps of Step 1, and let P be the linear
transformation of forms whose properties are stated in Step 1. We then define
our desired linear transformation P : Q¥+ (B) — Q¥(A) by the equation

Pn= P(H"n).
See Figure 39.1. Since H*nis a k+1 form defined in a neighborhood of A x I,
then P(H*n) is a k-form defined in A.

Note that since H is a differentiable homotopy between g and h,

Hoa=g and Hof=h.
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<

A AxI B
Figure 39.1

Then if £ > 0, we compute
dPn+ Pdn=dP(H*n) + P(H"dn)
=dP(H*n) + P(dH"n)
=p"(H™n) —a”(H"n) by Step 1,
=h*n-g"n,
as desired. An entirely similar computation appliesif k = 0. O

Now we can prove the Poincaré lemma. First, a definition:

Definition. Let A be an open set in R*. We say that A is star-convex
with respect to the point p of A if for each x € A, the line segment joining x
and p lies in A.
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Figure 39.2

EXAMPLE 1. In Figure 39.2, the set A is star-convex with respect to the
point p, but not with respect to the point q. The set B is star-convex with
respect to each of its points; that is, it is convex. The set C' is not star-convex
with respect to any of its points.

Theorem 39.3 (The Poincaré lemma). Let A be a star-convex
open set in R*. If w is a closed k-form on A, then w is ezxact on A.

Proof. We apply the preceding theorem. Let p be a point with respect
to which A is star-convex. Let h : A — A be the identity map and let
g : A — A be the constant map carrying each point to the point p. Then g
and h are differentiably homotopic; indeed, the map

H(x,t) = th(x) + (1 — t)g(x)

carries A x I into A and is the desired differentiable homotopy. (For each t,
the point H(x,1) lies on the line segment between h(x) = x and g(x) = p, so
that it lies in A.) We call H the straight-line homotopy between g and h.

Let P be the transformation given by the preceding theorem. If f is a
O-form on A, we have

Pldf)=h"f-g"f=foh—fog.
Then if df = 0, we have for all x € A,

0= f(h(x)) - f(9(x)) = f(x) - f(p),
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so that f is constant on A.
If w is a k-form with & > 0, we have

dPw + Pdw = h*'w - g"w.

Now h*w = w because h is the identity map, and g*w = 0 because g is a
constant map. Then if dw = 0, we have

dPw = w,
so that w is exact on A. O

Theorem 39.4. Let A be a star-convez open set in R*. Let w be
a closed k-form on A. If k > 1, and if n and 1o are two k — 1 forms
on A with dn=w = dng, then

n=rmno+db

for some k —2 form 6 on A. If k =1, and if f and f, are two 0-forms
on A with df = w = dfy, then f = fy + ¢ for some constant c.

Proof. Since d(n—mo) = 0, the form 17—1) is a closed form on A. By the
Poincaré lemma, it is exact. A similar comment applies to the form f—fo. O

EXERCISES

1. (a) Translate the Poincaré lemma for k-forms into theorems about scalar
and vector fields in R®. Consider the cases k = 0,1,2,3.

(b) Do the same for Theorem 39.4. Consider the cases k = 1,2,3.

2. (a) Let g: A — B be a diffeomorphism of open sets in R", of class C*.
Show that if A is homologically trivial in dimension k, so is B.

(b) Find an open set in R? that is not star-convex but is homologically
trivial in every dimension.

3. Let A be an open set in R*. Show that A is homologically trivial in
dimension 0 if and only if A is connected. [Hint: Let p € A. Show that
if df = 0, and if x can be joined by a broken-line path in A to p, then
f(x) = f(p). Show that the set of all x that can be joined to p by a
broken-line path in A is open in A.]

4. Prove the following theorem; it shows that P is in some sense an operator
that integrates in the direction of the last coordinate:

Theorem. Let A be open in R"; letn be a k+1 form defined in an
open set U of R™?! containing Ax I. Giventel, leta.: A—-U
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be the “slice” map defined by o, (x) = (x,t). Given fized vectors
(x;vy), ..., (x;v;) tn Tx(R"), let

(y;wi) = (0u)a(x5v4),

for each t. Then (y;w;) belongs to T,(R**'); and y = (x,t) is a
function of 1, but wi = (v,0) is not. (See Figure 39.3.) Then

(Pn)(x)((X; vi)s e, (% vk)) -

08 [ g (W) -, (55 W)y (¥ €npa))-

t=0

Figure 39.3
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§40. THE DeRHAM GROUPS OF PUNCTURED EUCLIDEAN SPACE

We have shown that an open set A of R" is homologically trivial in all di-
mensions if it is star-convex. We now consider some situations in which A
is not homologically trivial in all dimensions. The simplest such situation
occurs when A is the punctured euclidean space R® — 0. Earlier exercises
demonstrated the existence of a closed n — 1 form in R” — O that is not exact.
Now we analyze the situation further, giving a definitive criterion for deciding
whether or not a given closed form in R" — 0 is exact.

A convenient way to deal with this question is to define, for an open set A
in R™, certain vector spaces H*(A) that are called the deRham groups of A.
The condition that A be homologically trivial in dimension k is equivalent to
the condition that H*(A) be the trivial vector space. We shall determine the
dimensions of these spaces in the case A = R™ — 0.

To begin, we consider what is meant by the quotient of a vector space by
a subspace.

Definition. If V is a vector space, and if W is a linear subspace of V/,
we denote by V/W the set whose elements are the subsets of V' of the form

v+W={v+w|we W}

Each such set is called a coset of V, determined by W. One shows readily
that if v; — vo € W, then the cosets vi + W and vy + W are equal, while
if vi — va ¢ W, then they are disjoint. Thus V/W is a collection of disjoint
subsets of V whose union is V. (Such a collection is called a partition of V)
We define vector space operations in V/W by the equations

i+ W)+ (va+ W)= (vi+v2)+ W,
cov+W)=(cv)+ W.

With these operations, V//W becomes a vector space. It is called the quotient
space of V by W.

We must show these operations are well-defined. Suppose vi + W =
vi+W and vo + W = v4+ W. Then v; —v| and v3 — v} are in W, so that
their sum, which equals (v + v3) — (V] + v5), is in W. Then

(V1 +V2)+W:(V’1+Vg)+W.

Thus vector addition is well-defined. A similar proof shows that multiplication
by a scalar is well-defined. The vector space properties are easy to check; we
leave the details to you.
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Now if V is finite-dimensional, then so is V/W; we shall not however
need this result. On the other hand, V/W may be finite-dimensional even in
cases where V' and W are not.

Definition. Suppose V and V' are vector spaces, and suppose W and
W' are linear subspaces of V' and V| respectively. If T': V — V' is a linear
transformation that carries W into W', then there is a linear transformation

T:viw Vv W

defined by the equation T(v + W) = T(v) + W'; it is said to be induced
by T'. One checks readily that T is well-defined and linear.

Now we can define deRham groups.

Definition. Let A be an open set in R™. The set Q*(A) of all k-forms
on A is a vector space. The set C¥(A) of closed k-forms on A and the set
E*(A) of exact k-forms on A are linear subspaces of Q¥(A). Since every
exact form is closed, F¥(A) is contained in C*(A4). We define the deRham
group of A in dimension k to be the quotient vector space

H*(A) = C¥(A)/E*(A).

If w is a closed k-form on A (i.e., an element of C¥(A)), we often denote its
coset w + E*(A) simply by {w}.

It is immediate that H*(A) is the trivial vector space, consisting of the
zero vector alone, if and only if A is homologically trivial in dimension k.

Now if A and B are open sets in R™ and R™, respectively, andifg: A — B
is a C* map, then g induces a linear transformation g* : Q*(B) — Q*(A) of
forms, for all k. Because g* commutes with d, it carries closed forms to closed
forms and exact forms to exact forms; thus ¢* induces a linear transformation

g* - H¥(B) — H*(A)

of deRham groups. (For convenience, we denote this induced transformation
also by g*, rather than by §*.)

Studying closed forms and exact forms on a given set A now reduces to
calculating the deRham groups of A. There are several tools that are used
in computing these groups. We consider two of then here. One involves the
notion of a homotopy equivalence. The other is a special case of a general
theorem called the Mayer-Vietoris theorem. Both are standard tools in
algebraic topology.
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Theorem 40.1 (Homotopy equivalence theorem). Let A and B
be open sets in R® and R™, respectively. Let g: A— B andh:B — A
be C* maps. Ifgoh : B — B is differentiably homotopic to the identity
map ip of B, and if hog : A — A is differentiably homotopic to the
identity map ia of A, then g* and h* are linear isomorphisms of the
deRham groups.

If goh equals ip and h o g equals i, then of course g and h are
diffeomorphisms. If g and h satisfy the hypotheses of this theorem, then they
are called (differentiable) homotopy equivalences.

Proof. If nis a closed k-form on A, for k > 0, then Theorem 39.2
implies that

(hog)'n—(ia)"n

is exact. Then the induced maps of the deRham groups satisfy the equation

g (k" ({n}) = {n},

so that g* o h* is the identity map of H*(A) with itself. A similar argument
shows that h* og* is the identity map of H¥(B). The first fact implies that g*
maps H*(B) onto H*(A), since given {n} in H¥(A), it equals g*(h*{n}).
The second fact implies that g* is one-to-one, since the equation g*{w} =0
implies that h*(g* {w}) = 0, whence {w} = 0.

By symmetry, h* is also a linear isomorphism. O

In order to prove our other major theorem, we need a technical lemma:

Lemma 40.2. Let U and V be open sets in R*; let X = U UV,
and suppose A = UNV is non-empty. Then there exists a C*> function
é: X —[0,1] such that ¢ is identically 0 in a neighborhood of U — A
and ¢ is identically 1 in a neighborhood of V — A.

Proof. See Figure 40.1. Let {¢;} be a partition of unity on X dominated
by the open covering {U,V}. Let S; = Support ¢; for each :. Divide the
index set of the collection {¢;} into two disjoint subsets J and K, so that for
every i € J, the set S; is contained in U, and for every i € K, the set S;
is contained in V. (For example, one could let J consist of all ¢ such that
Si C U, and let K consist of the remaining ¢.) Then let

$(x) = ) di(x).

i€eK
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Figure 40.1

The local finiteness condition guarantees that ¢ is of class C® on X, since
each x € X has a neighborhood on which ¢ equals a finite sum of C*®
functions.

Let a € U — A; we show ¢ is identically 0 in a neighborhood of a. First,
we choose a neighborhood W of a that intersects only finitely many sets .S;.
From among these sets 5}, take those whose indices belong to K, and let D
be their union. Then D is closed, and D does not contain the point a. The
set W — D is thus a neighborhood of a, and for each ¢ € K, the function ¢;
vanishes on W — D. It follows that ¢(x) =0 for x € W — D.

Since
1-¢(x) = ) i(x),
icJ
symmetry implies that the function 1 — ¢ is identically 0 in a neighborhood
of V-A 0O

Theorem 40.3 (Mayer-Vietoris—special case). Let U and V be
open sets in R® with U and V homologically trivial in all dimensions.
Let X = UUV; suppose A = UNYV is non-empty. Then H°(X) is
trivial, and for k > 0, the space H**1(X) is linearly isomorphic to the
space H*(A).

Proof. We introduce some notation that will be convenient. If B,C
are open sets of R* with B C C, and if 5 is a k-form on C, we denote by
7B the restriction of 1 to B. That is, §|B = j*n, where j is the inclusion
map j: B — C. Since j* commutes with d, it follows that the restriction of
a closed or exact form is closed or exact, respectively. It also follows that if

A C B c C, then (7| B)|A = n|A.
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Step 1. We first show that H°(X) is trivial. Let f be a closed 0-
form on X. Then f|U and f|V are closed forms on U and V, respectively.
Because U and V are homologically trivial in dimension 0, there are constant
functions ¢; and ¢z such that fl[U = ¢; and f|V = c3. Since UNV is
non-empty, ¢; = ¢z; thus f is constant on X.

Step 2. Let ¢ : X — [0,1] be a C™ function such that ¢ vanishes in a
neighborhood U’ of U — A and 1 — ¢ vanishes in a neighborhood V' of V — 4.
For k > 0, we define

§ : QF(A) — QF1(X)

dpAw on A,
§(w) =
0 on U'UV".

by the equation

Since d¢ = 0 on the set U’ U V', the form §(w) is well-defined; since A and
U’ UV’ are open and their union is X, it is of class C*® on X. The map § is
clearly linear. It commutes with the differential operator d, up to sign, since

(-1)dpAdw on A

0 on U'uV’

d(6(w)) = { } = —6(dw).

Then § carries closed forms to closed forms, and exact forms to exact forms,
so it induces a linear transformation

§: H¥(A) — H*(X).

We show that & is an isomorphism.

Step 3. We first show that 8 is one-to-one. For this purpose, it suffices
to show that if w is a closed k-form in A such that §(w) is exact, then w is
itself exact.

So suppose §(w) = df for some k-form @ on X. We define k-forms w;
and wy on U and V, respectively, by the equations

¢w on A, {(l—qb)w on A,
wy = and wy =
0 on U/, 0 on V'.

Then w; and w, are well-defined and of class C*®. See Figure 40.2.
We compute

do = dpAw+0 on 4,
on U’;
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Figure 40.2

the first equation follows from the fact that dw = 0. Then
dw; = §(w)|U = d6|U.

It follows that wy; — @|U is a closed k-form on U. An entirely similar proof
shows that
dw,; = —dO|V,

so that wy + 0|V is a closed k-form on V.

Now U and V are homologically trivial in all dimensions. If k£ > 0, this
implies that there are k — 1 forms 7; and 7, on U and V, respectively, such
that

wy — 0|U = d’l]l and wiy+ 0|V = d’l]g.

Restricting to A and adding, we have
wilA+ wz|A = dm|A + dmy|A,
which implies that
¢w + (1= ¢)w = d(m|A + 2| A).

Thus w is exact on A.
If £ = 0, then there are constants ¢; and cy such that

w1—0|U=c1 and w2+0|V=(,‘2.

Then
¢OJ+ (1 —<;[>)w :wllA +(AJ2|A =+ Ca.

Step 4. We show 6 maps H*(A) onto H**1(X). For this purpose, it
suffices to show that if 7 is a closed k + 1 form in X, then there is a closed
k-form w in A such that  — §(w) is exact.
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Figure 40.3

Given 7, the forms U and 7|V are closed; hence there are k-forms 0,
and 6, on U and V respectively, such that

dé, = njU and df; =n|V.
Let w be the k-form on A defined by the equation
w=0,|4 - 0,4

then w is closed because dw = d6,|A — df;|A = n]A — n|A = 0. We define a
k-form 6 on X by the equation

(1-¢)0: + ¢f; on A,

=<6, on U’,
4, on V'.
Then 8 is well-defined and of class C*°. See Figure 40.3. We show that
n - 6(w) = db;

this completes the proof.
We compute df on A and U’ and V' separately. Restricting to A, we
have

dO)A = [~do A (8:]A4) + (1 — §)(d01| A)] + [d A (8a]A) + §(dB,] A)]
= $nlA+(1— $)1lA +dg A[:|A~6,]4]
= lA +dg A (~w)
= 7|4 - §(w)|A.
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Restricting to U’ and to V', we compute

do|U’ = d6,|U" = n|U’ = n|U’ - §(w)|U",

AV’ = dfo|V' = |V’ = 9|V’ — é(w)|V",
since §(w)|U’ =0 and §(w)|V’ = 0 by definition. It follows that

df = - 6(w),
as desired. O
Now we can calculate the deRham groups of punctured euclidean space.

Theorem 40.4. Letn> 1. Then

0 fork#n-1,

dim H¥(R™ - 0) =
1 fork=n-1.

Proof. Step 1. We prove the theorem for n = 1. Let A = R! - 0;
write A = Ao U Ay, where A consists of the negative reals and A, consists
of the positive reals. If w is a closed k-form in A, with k£ > 0, then w|A4, and
w|A; are closed. Since Ag and A; are star-convex, there are k — 1 forms 7o
and 7; on Ao and Aj, respectively, such that drn; = w|A; for 2 = 0,1. Define
n = 1o on Ag and 7 = 1, on A;. Then 7 is well-defined and of class C*°, and
dn =w.

Now let f; be the O-form in A defined by setting fo(z) = 0 for € Ao
and fo(z) = 1 for z € A;. Then f; is a closed form, and fy is not exact.
We show the coset {fp} forms a basis for H°(A). Given a closed O-form f
on A, the forms flAo and f|A; are closed and thus exact. Then there are
constants ¢y and ¢; such that f|Ao = ¢y and f|A; = ¢;. It follows that

f(x) =c1fo(x) +co

for x € A. Then {f} = c1{ fo}, as desired.

Step 2. If B is open in R*, then B x R is open in R"*1. We show that
for all k,
dim H*(B) = dim H*¥(B x R).

We use the homotopy equivalence theorem. Define g : B — B x R by
the equation g(x) = (x,0), and define h : B x R — B by the equation
h(x,8) = x. Then h o g equals the identity map of B with itself. On the
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other hand, g o h is differentiably homotopic to the identity map of B x R
with itself; the straight-line homotopy will suffice. It is given by the equation
H((x,s),t) = t(x,s) + (1 — t)(x,0) = (x, st).

Step 3. Let n > 1. We assume the theorem true for n and prove it

for n + 1.
Let U and V be the open sets in R**! defined by the equations

U =R"*1_{(0,...,0,t)]t >0},

V =R —{(0, ..., 0,t)}t < 0}.

Thus U consists of all of R*+! except for points on the half-line 0 x H!, and V
consists of all of R*t! except for points on the half-line 0 x L. Figure 40.4
illustrates the case » = 3. The set A = U NV is non-empty; indeed, A
consists of all points of R®t! = R™ x R not on the line 0 x R; that is,

A=(R"-0)xR.

Figure 40.4

If weset X = U UV, then
X =Rt 0.

The set U is star-convex relative to the point p = (0, ..., 0,—1) of R**!, and
the set V is star-convex relative to the point q = (0, ..., 0,1), as you can
readily check. It follows from the preceding theorem that H°(X) is trivial,
and that
dim H**!(X) = dim H*¥(4) for k >0.

Now Step 2 tells us that H¥(A) has the same dimension as H*(R" — 0), and
the induction hypothesis implies that the latter has dimension 0 if k # n — 1,
and dimension 1 if k = n — 1. The theorem follows. [

Let us restate this theorem in terms of forms.
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Theorem 40.5. Let A =R" -0, withn > 1.
(a) Ifk # n—1, then every closed k-form on A is exact on A.

(b) There is a closed n — 1 form ny on A that is not exact. If 1 is any
closed n—1 form on A, then there is a unique scalar ¢ such that n—cno
is exact. [

This theorem guarantees the existence of a closed n — 1 form in R” — 0
that is not exact, but it does not give us a formula for such a form. In the
exercises of the last chapter, however, we obtained such a formula. If 7y is
the n — 1 form in R” — 0 given by the equation

170=Z(—-1)i_1f,' d:l?l/\"'/\gi\l:;/\-"/\d.’l?n,

i=1

where f;(x) = z;/||x||?, then it is easy to show by direct computation that
7)o 1s closed, and only somewhat more difficult to show that the integral of 7
over §”~! is non-zero, so that by Stokes’ theorem it cannot be exact. (See
the exercises of §35 or §38.) Using this result, we now derive the following
criterion for a closed n — 1 form in R” — 0 to be exact:

Theorem 40.6. Let A=R"—-0, withn > 1. Ifn is a closed n -1
form in A, then 7 is exact in A if and only if

/ n=0.
Sn—-1

Proof. If nis exact, then its integral over S*~1 is 0, by Stokes’ theorem.
On the other hand, suppose this integral is zero. Let 79 be the form just
defined. The preceding theorem tells us that there is a unique scalar ¢ such
that n — cno is exact. Then

/ n= C/ o,
sn—1 Ssn—1

by Stokes’ theorem. Since the integral of g over S®~1 is not 0, we must have
¢=0. Thus is exact. O

343



344 Closed Forms and Exact Forms Chapter 8

EXERCISES

1. (a) Show that V/W is a vector space.
(b) Show that the transformation T induced by alinear transformation T'
is well-defined and linear.

2. Suppose a;, ....an is a basis for V whose first k elements from a basis
for the linear subspace W. Show that the cosets ax41 + W, ..., an + W
form a basis for V/W.

3. (a) Translate Theorems 40.5 and 40.6 into theorems about vector and
scalar fields in R™ — 0, in the case n = 2.
(b) Repeat for the case n = 3.

4. Let U and V be open sets in R”; let X = U U V; assume that A =
UNYV is non-empty. Let 6 : H*(A) — H**!(X) be the transformation
constructed in the proof of Theorem 40.3. What hypotheses on H'(U)
and H'(V) are needed to ensure that:

(a) 5 is one-to-one?
(b) The image of 8 is all of H**!(X)?
(c) H°(X) is trivial?
5. Prove the following:
Theorem. Let p and q be two points of R™; let n > 1. Then

fk#n-1,

0
dimH"(R"—p—q):{
ifk=n-1

Proof. Let S = {p,q}. Use Theorem 40.3 to show that the open set
R™t! — § x H! of R"*! is homologically trivial in all dimensions. Then
proceed by induction, as in the proof of Theorem 40.4.

6. Restate the theorem of Exercise 5 in terms of forms.

7. Derive a criterion analogous to that in Theorem 40.6 for a closed n — 1
form in R" ~ p — q to be exact.

8. Translate results of Exercises 6 and 7 into theorems about vector and
scalar fields in R®™ — p - q in the cases n =2 and n = 3.
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§41. DIFFERENTIABLE MANIFOLDS AND RIEMANNIAN MANIFOLDS

Throughout this book, we have dealt with submanifolds of euclidean space
and with forms defined in open sets of euclidean space. This approach has
the advantage of conceptual simplicity; one tends to be more comfortable
dealing with subspaces of R™ than with arbitrary metric spaces. It has the
disadvantage, however, that important ideas are sometimes obscured by the
familiar surroundings. That is the case here.

Furthermore, it is true that, in higher mathematics as well as in other sub-
jects such as mathematical physics, manifolds often occur as abstract spaces
rather than as subspaces of euclidean space. To treat them with the proper
degree of generality requires that one move outside R".

In this section, we describe briefly how this can be accomplished, and
indicate how mathematicians really look at manifolds and forms.

Differentiable manifolds

Definition. Let M be a metric space. Suppose there is a collection of
homeomorphisms a; : U; — V;, where Uj is open in H* or R*, and Vj is open
in M, such that the sets V; cover M. (To say that a; is a homeomorphism
is to say that a; carries U; onto V; in a one-to-one fashion, and that both a;
and oy ! are continuous.) Suppose that the maps o; overlap with class C*;

345



346 Epilogue—Life Outside R™ Chapter 9

this means that the transition function ;! o a; is of class C*® whenever
Vi 0 V; is nonempty. The maps a; are called coordinate patches on M,
and so is any other homeomorphism a : U — V, where U is open in H¥
or R¥, and V is open in M, that overlaps the a; with class C*®°. The metric
space M, together with this collection of coordinate patches on M, is called
a differentiable k-manifold (of class C'*®).

In the case k = 1, we make the special convention that the domains of
the coordinate patches may be open sets in L! as well as R! or H!, just as we
did before.

If there is a coordinate patch a : U — V about the point p of M such
that U is open in R¥, then p is called an interior point of M. Otherwise, p is
called a boundary point of M. The set of boundary points of M is denoted
OM. If a: U — V is a coordinate patch on M about p, then p belongs to
OM if and only if U is open in H¥ and p = a(x) for some x € R¥=1 x 0. The
proof is the same as that of Lemma 24.2.

Throughout this section, M will denote a differentiable k-manifold.

Definition. Given coordinate patches ap,; on M, we say they over-
lap positively if det D(a7! 0 ag) > 0. If M can be covered by coordinate
patches that overlap positively, then M is said to be orientable. An orien-
tation of M consists of such a covering of M, along with all other coordinate
patches that overlap these positively. An oriented manifold consists of a
manifold M together with an orientation of M.

Given an orientation {a;} of M, the collection {e; o1}, where 7 : RF —
R* is the reflection map, gives a different orientation of M it is called the
orientation opposite to the given one,

Suppose M is a differentiable k-manifold with non-empty boundary. Then
OM is a differentiable & — 1 manifold without boundary. The maps a o b,
where a is a coordinate patch on M about p € M and b : R¥=! — RF is the
map

b(xl, N .’171;_1) = (2?1, ceey xk_1,0),

are coordinate patches on @M. The proof is the same as that of Theorem 24.3.

If the patches oy and @; on M overlap positively, so do the coordinate
patches agob and a; 0ob on M ; the proof is that of Theorem 34.1. Thus if M
is oriented and @M is nonempty, then @M can be oriented simply by taking
coordinate patches on M belonging to the orientation of M about points of
OM, and composing them with the map b. If k is even, the orientation of
OM obtained in this way is called the induced orientation of M if k is
odd, the opposite of this orientation is so called.

Now let us define differentiability for maps between two differentiable
manifolds.
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Definition. Let M and N be differentiable manifolds of dimensions k
and n, respectively. Suppose A is a subset of M; and suppose f : A — N.
We say that f is of class C if for each x € A, there is a coordinate patch
a:U — V on M about z, and a coordinate patch 3 : W —Y on N about
y = f(z), such that the composite =1 o f o a is of class C*°, as a map of
a subset of R¥ into R®. Because the transition functions are of class C'*,
this condition is independent of the choice of the coordinate patches. See
Figure 41.1.

Figure 41.1

Of course, if M or N equals euclidean space, this definition simplifies,
since one can take one of the coordinate patches to be the identity map of
that euclidean space.

A one-to-one map f : M — N carrying M onto N is called a diffeo-
morphism if both f and f~! are of class C'*°.

Now we define what we mean by a tangent vector to M. Since we have
here no surrounding euclidean space to work with, it is not obvious what a
tangent vector should be.

Our usual picture of a tangent vector to a manifold M in R” at a point p
of M is that it is the velocity vector of a C® curve 7 : [a,b] — M that passes
through p. This vector is just the pair (p; Dy(to)) where p = ¥(%,) and Dy
is the derivative of 7.

Let us try to generalize this notion. If M is an arbitrary differentiable
manifold, and 4 is a C* curve in M, what does one mean by the “derivative”
of the function ? Certainly one cannot speak of derivatives in the ordinary
sense, since M does not lie in euclidean space. However,if o : U — V isa
coordinate patch in M about the point p, then the composite function a~1oy
is a map from a subset of R! into R¥, so we can speak of its derivative. We
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Figure 41.2

can thus think of the “derivative” of 7 at o as the function v that assigns, to
each coordinate patch a about the point p, the matrix

v(a) = D(a™" 0 7)(to),

where p = a(t).

Of course, the matrix D(a~! o+) depends on the particular coordinate
patch chosen; if ap and a; are two coordinate patches about p, the chain rule
implies that these matrices are related by the equation

v(ay) = Dg(xo) - v(ao),

where g is the transition function ¢ = af' o ap, and xo = ag'(p). See
Figure 41.2.

The pattern of this example suggests to us how to define a tangent vector
to M in general.

Definition. Given p € M, a tangent vector to M at pis a function v
that assigns, to each coordinate patch a : U — V in M about p, a column
matrix of size k by 1 which we denote v(a). If oy and a; are two coordinate
patches about p, we require that

(%) v(a1) = Dg(xo) - v(ao),
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where g = o' o oy is the transition function and xo = @ '(p). The entries
of the matrix v(a) are called the components of v with respect to the
coordinate patch a.

It follows from () that a tangent vector v to M at pis entirely determined
once its components are given with respect to a single coordinate system. It
also follows from (*) that if v and w are tangent vectors to M at p, then we
can define av + bw unambiguously by setting

(av + bw)(a) = av(a) + bw(a)

for each a. That is, we add tangent vectors by adding their components in
the usual way in each coordinate patch. And we multiply a vector v by a
scalar similarly.

The set of tangent vectors M at p is denoted T,(M); it is called the
tangent space to M at p. It is easy to see that it is a k-dimensional space;
indeed, if o is a coordinate patch about p with a(x) = p, one checks readily
that the map v — (x;v(a)), which carries 7,(M) onto 7(R*), is a linear
isomorphism. The inverse of this map is denoted by

a. : T(R*) — T,(M).

It satisfies the equation a. (x;v(a)) = v.
Given a C® curve 7 : [a,b] — M in M, with ¥(f;) = p, we define the
velocity vector v of this curve corresponding to the parameter value t; by

the equation
v(a) = D(a" o 7)(to);

then v is a tangent vector to M at p. One readily shows that every tangent
vector to M at p is the velocity vector of some such curve.

REMARK. There is an alternate approach to defining tangent vectors that is
quite common. We describe it here.

Suppose v is a tangent vector to M at the point p of M. There is
associated with v a certain operator X, on real-valued C'™ functions defined
near p. This operator is called the derivative with respect to v; it arises
from the following considerations:

Suppose f is a C* function on M defined in a neighborhood of p, and
suppose V is the velocity vector of the curve v : [a,b] — M corresponding
to the parameter value ¢, where 7y(f,) = p. Then the derivative d(f o v)/dt
measures the rate of change of f with respect to the parameter ¢ of the curve.
Ifa: U — V is a coordinate patch about p, with a(x) = p, we can express
this derivative as follows: We write f oy = (f o @) o (! 0 ¥), and compute

W(to) = D(f o a)(x) - D(a™" 0 7)(to),

= D(f o a)(x) - v(a).
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to

Figure 41.3

See Figure 41.3. Note that this derivative depends only on f and the velocity
vector v, not on the particular curve 7.

This formula leads us to define the operator X, as follows:

If v is a tangent vector to M at p, and if f is a C'™ real-valued function
defined near p, choose a coordinate patch a: U — V about p with a(x) = p,
and define the derivative of f with respect to v by the equation

Xo(f) = D(f 0 a)(x) - v(a).

One checks readily that this number is independent of the choice of &. One
checks also that Xy4w = Xy + Xw and Xy = ¢Xy. Thus the sum of vectors
corresponds to the sum of the corresponding operations, and similarly for a
scalar multiple of a vector.

Note that if M = R*, then the operator X, is just the directional deriva-
tive of f with respect to the vector v.

The operator X satisfies the following properties, which are easy to
check:

(1) (Locality). If f and g agree in a neighborhood of p, then X, (f) = X\ (g).
(2) (Linearity). Xy(af +bg) =aX (f)+ bX.(g).
(3) (Product rule). Xv(f-g) = Xv(f)g(p) + f(p)Xv(9)-

These properties in fact characterize the operator X,. One has the fol-
lowing theorem: Let X be an operator that assigns to each C'™ real-valued
function f defined near p a number denoted X (f), such that X satisfies con-
ditions (1)—(3). Then there is a unique tangent vector v to M at p such that
X = X,. The proof requires some effort; it is outlined in the exercises.

This theorem suggests an alternative approach to defining tangent vectors.
One could define a tangent vector to M at p to be simply an operator X
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satisfying conditions (1)-(3). The set of these operators is a linear space if we
add operators in the usual way and multiply by scalars in the usual way, and
thus it can be identified with the tangent space to M at p.

Many authors prefer to use this definition of tangent vector. It has the
appeal that it is “intrinsic”; that is, it does not involve coordinate patches
explicitly.

Now we define forms on M.

Definition. An /-form on M is a function w assigning to each p € M,
an alternating {-tensor on the vector space T,(M). That is,

w(p) € AT, (M)
for each pe M.

We require w to be of class C*™ in the following sense: If a : U — V
is a coordinate patch on M about p, with a(x) = p, one has the linear

transformation
T = a. : T(R) = T,(M)

and the dual transformation
T* : A ('T,,(M)) — A (’Tx(R"’)) .
If w is an ¢-form on M, then the {-form a*w is defined as usual by setting

(e'w)(x) = T" (w(p))-

We say that w is of class C® near p if a*w is of class ™ near x in the
usual sense. This condition is independent of the choice of coordinate patch.
Thus w is of class C if for every coordinate patch a on M, the form a*w
is of class C'™ in the sense defined earlier.

Henceforth, we assume all our our forms are of class C.

Let Q(M) denote the space of {-forms on M. Note that there are no
elementary forms on M that would enable us to write w in canonical form,
as there were in R™, However, one can write &*w in canonical form as

atw=>Y_ frdzy,
(7]

where the dz; are the elementary forms in R¥. We call the functions fr the
components of w with respect to the coordinate patch a. They are of course
of class C.
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Definition. Ifw is an {-form on M, we define the differential of w as

follows: Given p € M, and given tangent vectors vy, ..., v¢y1 to M at p,
choose a coordinate patch @ : U — V on M about p with a(x) = p. Then
define

dw(p)(v1s .5 ves1) = d(@w)(x)((x; v (@), ..y (X Veqa (@)

That is, we define dw by choosing a coordinate patch e, pulling w back
to a form a*w in R, pulling vy, ..., ves1 back to tangent vectors in R¥,
and then applying the operator d in R*. One checks that this definition is
independent of the choice of the patch . Then dw is of class C*°,

We can rewrite this equation as follows: Let a; = v;(a). The preceding
equation can be written in the form

dw(p)(a.(x;al), ceny a.(x;a”l)) = d(a"w)(x)((x; a;)y ..., (x; az+1))-

This equation says simply that a*(dw) = d(a*w). Thus one has an alternate
version of the preceding definition:

Definition. Ifw is an {-form on M, then dw is defined to be the unique
£+ 1 form on M such that for every coordinate patch a on M,

o (dw) = d(a*w).

Here the “d” on the right side of the equation is the usual differential opera-
tor d in R¥, and the “d” on the left is our new differential operator in M.

Now we define the integral of a k-form over M. We need first to discuss
partitions of unity. Because we assume M is compact, matters are especially
simple.

Theorem 41.1.  Let M be a compact differentiable manifold. Given
a covering of M by coordinate patches, there exist functions ¢; : M — R
of class C*, fori=1, ..., ¢, such that:
(1) ¢i(p) >0 for eachpe M.
(2) For each i, the set Support ¢; is covered by one of the given
coordinate patches.

(3) Z¢i(p) =1 for each pe M.

Proof. Given p € M, choose a coordinate patch a : U — V about p.
Let a(x) = p; choose a non-negative C'*® function f : U — R whose support
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is compact and is contained in U, such that f is positive at the point x.
Define %, : M — R by setting

boy) = {({(a' (y) ifyeV,

otherwise.
Because f(a~!(y)) vanishes outside a compact subset of V, the function 9,
is of class C*™ on M.

Now 1, is positive on an open set U, about p. Cover M by finitely many
of the open sets Uy, say for p = p1, ..., p¢. Then set

A

[4
>, and @i =(1/N)dp,. O
j=1

Definition. Let M be a compact, oriented differentiable k-manifold.
Let w be a k-form on M. If the support of w lies in a single coordinate patch
a : U — V belonging to the orientation of M, define

/w:/ a*w.
M Int U

In general, choose ¢1, ..., ¢¢ in the preceding theorem and define

/Mw=é;[/M¢.-w].

The usual argument shows this integral is well-defined and linear.
Finally, we have:

Theorem 41.2 (Stokes’ theorem). Let M be a compact, oriented
differentiable k-manifold. Let w be a k — 1 form on M. If M is non-
empty, give OM the induced orientation; then

/ dw:/ w.
M oM

If OM is empty, then [, dw =0.

Proof. The proof given earlier goes through verbatim. Since all the
computations were carried out by working within coordinate patches, no
changes are necessary. The special conventions involved when k£ = 1 and
8M is a 0-manifold are handled exactly as before. O
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Not only does Stokes’ theorem generalize to abstract differentiable man-
ifolds, but the results in Chapter 8 concerning closed forms and exact forms
generalize as well. Given M, one defines the deRham group H¥(M) of M in
dimension k to be the quotient of the space of closed k-forms on M by the
space of exact k-forms. One has various methods for computing the dimen-
sions of these spaces, including a general Mayer-Vietoris theorem. If M is
written as the union of the two open sets U and V in M, it gives relations
between the deRham groups of M and U and V and U N V. These topics
are explored in [B-T)].

The vector space H*(M) is obviously a diffeomorphism invariant of M.
It is an unexpected and striking fact that it is also a topological invariant
of M. This means that if there is a homeomorphism of M with N, then
the vector spaces H*(M) and H¥(N) are linearly isomorphic. This fact is a
consequence of a celebrated theorem called deRham’s theorem, which states
that the algebra of closed forms on M modulo exact forms is isomorphic to
a certain algebra, defined in algebraic topology for an arbitrary topological
space, called the “cohomology algebra of A with real coefficients.”

Riemannian manifolds

We have indicated how Stokes’ theorem and the deRham groups generalize
to abstract differentiable manifolds. Now we consider some of the other topics
we have treated. Surprisingly, many of these do not generalize as readily.

Consider for instance the notions of the volume of a manifold M, and of
the integral [, f dV of a scalar function over M with respect to volume.
These notions do not generalize to abstract differentiable manifolds.

Why should this be so? One way of answering this question is to note that,
according to the discussion in §36, one can define the volume of a compact
oriented k-manifold M in R” by the formula

(M) = /Mw,,,

where w, is a “volume form” for M, that is, w, is a k-form whose valueis 1 on
any orthonormal basis for T,( M) belonging to the natural orientation of this
tangent space. In this case, 7,(M) is a linear subspace of 7,(R”) = pxR", so
T, (M) has a natural inner product derived from the dot product in R®. This
notion of a volume form cannot be generalized to an arbitrary differentiable
manifold M because we have no inner product on 7,(M) in general, so we do
not know what it means for a set of vectors to be orthonormal.

In order to generalize our definition of volume to a differentiable mani-
fold M, we need to have an inner product on each tangent space 7,(M):

Definition. Let M be a differentiable k-manifold. A Riemannian
metricon M is an inner product (v, w) defined on each tangent space 7,(M);
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it is required to be of class C™ as a 2-tensor field on M. A Riemannian
manifold consists of a differentiable manifold M along with a Riemannian
metric on M.

(Note that the word “metric” in this context has nothing to do with the
use of the same word in the phrase “metric space.”)

Now it is true that for any differentiable manifold M, there exists a Rie-
mannian metric on M. The proof is not particularly difficult; one uses a
partition of unity. But the Riemannian metric is certainly not unique.

Given a Riemannian metric on M, one has a corresponding volume func-
tion V(vy, ..., vi) defined for k-tuples of vectors of 7,(M). (See the exercises
of §21.) Then one can define the integral of a scalar function just as before:

Definition. Let M be a compact Riemannian manifold of dimension k.
Let f: M — R be a continuous function. If the support of f is covered by a
single coordinate patch a : U — V, we define the integral of f over M by
the equation

[fav=[ (oo (e, .., alxe).
M Int U

The integral of f over M is defined in general by using a partition of unity,
just as in §25. The volume of M is defined by the equation

ouM)= | av.

If M is a compact oriented Riemannian manifold, one can interpret the
integral f,, w of a k-form over M as the integral Jis A dV of a certain scalar
function, just as we did before, where A(p) is the value of w(p) on an or-
thonormal k-tuple of tangent vectors to M at p that belongs to the natural
orientation of 7,(M) (derived from the orientation of M). If A(p) is identi-
cally 1, then w is called the volume form of the Riemannian manifold M,
and is denoted by w,. Then

v(M) = [‘lwu.

For a Riemannian manifold M, a host of interesting questions arise.
For instance, one can define what one means by the length of a smooth
parametrized curve v : [a,b] — M it is just the integral

t=b
[ Clhettenl
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The integrand is the norm of the velocity vector of the curve v, defined of
course by using the inner product on 7,(M). Then one can discuss “geo-
desics,” which are “curves of minimal length” joining two points of M. One
goes on to discuss such matters as “curvature.” All this is dealt with in a sub-
ject called Riemannian geometry, which I hope you are tempted to investigate!

One final comment. As we have indicated, most of what is done in this
book can be generalized, either to abstract differentiable manifolds or to Rie-
mannian manifolds. One aspect that does not generalize is the interpretation
of Stokes’ theorem in terms of scalar and vector fields given in §38. The reason
is clear. The “translation functions” of §31, which interpret k-forms in R” as
scalar fields or vector fields in R™ for certain values of k, depend crucially
on having forms that are defined in R®, not on some abstract manifold M.
Furthermore, the operators grad and div apply only to scalar and vector fields
in R™; and curl applies only in R3. Even the notion of a “normal vector” to a
manifold M depends on the surrounding space, not just on M.

Said differently, while manifolds and differential forms and Stokes’ theo-
rem have meaning outside euclidean space, classical vector analysis does not.

EXERCISES

1. Show that if v € To(M), then v is the velocity vector of some C* curve
in M passing through p.

2. (a) Let v € T,(M). Show that the operator X, is well-defined.
(b) Verify properties (1)-(3) of the operator X,.

3. If wis an f-form on M, show that dw is well-defined (independent of the
choice of the coordinate patch a).

4. Verify that the proof of Stokes’ theorem holds for an arbitrary differen-
tiable manifold.

5. Show that any compact differentiable manifold has a Riemannian metric.

*6. Let M be a differentiable k-manifold; let p € M. Let X be an operator

on C'* real-valued functions defined near p, satisfying locality, linearity,
and the product rule. Show there is exactly one tangent vector v to M
at p such that X = X, as follows:

(a) Let F bea C* function defined on the open cube U in R* consisting
of all x with |x| < €. Show there are C'*® functions g, ..., gk defined
on U such that

F(x)~F(0)=)_ z,g,(x)
for x € U. [Hint: Set

u=1
g;i(x) = / D,F(z., ..., z;-1,uz;,0,...,0).

=0
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Then g, is of class C* and

l=1‘j
2009 = [ DyFlEn ey 2 10, 0)]
t=0

(b) I F and g; are as in (a), show that
D;F(0) = g;(0)-

(c) Show that if ¢ is a constant function, then X(c) = 0. [Hint: Show
that X(1-1)=0.]

(d) Given X, show there is at most one v such that X = X,. [Hint:
Let « be a coordinate patch about p; let h = o™, If X = X,, show
that the components of v(a) are the numbers X (h;).]

(e) Given X, show there exists a v such that X = X,. [Hint: Let o
be a coordinate patch with a(0) = p; let h = a™'. Set v; = X(hi),
and let v be the tangent vector at p such that v(a) has components
v, ..., vx. Given f defined near p, set F' = foa. Then

Xv(f)=z D;F(0) - v;.

Write F(x) = T,2;g;(x) + F(0) for x near 0, as in (a). Then

F=Y_hy-(gioh)+F(0)

in a neighborhood of p. Calculate X(f) using the three properties
of X]
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Addition,
of matrices, 4
of vectors, 1
Additivity,
of integral, 106, 109
of integral (extended), 125
of volume, 112
A¥(V), alternating tensors, 229
basis for, 232
a,, induced transformation of vectors,
246
o*, dual transformation of forms, 267
Alternating tensor, 229
elementary, 232
Antiderivative, 99
Approaches as a limit, 28
Area, 179
of 2-sphere, 216-217
of torus, 217
of parametrized-surface, 191
Arc, 306
Ascending k-tuple, 184

Ball, B"(a), see n-ball
Ball, open, 26
Basis, 2, 10
for R, 3
usual, for tangent space, 249
B"(a), see n-ball
Bd A, 29
Boundary,
of manifold, 205, 346
induced orientation, 288, 346
of set, 29
dM, see boundary of manifold
Bounded set, 32

Cauchy-Schwarz inequality, 9
Centroid,

of bounded set, 168

of cone, 168

of £, 218

of half-ball, 169

of manifold, 218

of parametrized-manifold, 193
Chain rule, 56
Change of variables, 147

Index

Change of variables theorem, 148
proof, 161
Class C*, 52
Class C?, 50
Class C",
form, 250, 351
function, 52, 144, 199
manifold, 196, 200, 347
manifold-boundary, 206
tensor field, 248
vector field, 247
Closed cube, 30
Closed form, 259
not exact, 261, 308, 343
Closed set, 26
Closure, 26
Cofactors, 19
expansion by, 23
Column index, 4
Column matrix, 6
Column rank, 7
Column space, 7
Common refinement, 82
Compact, 32
vs. closed and bounded, 33, 38
Compactness,
of interval, 32
of rectangle, 37
Compact support, 139
Comparison property,
of integral, 106
of integral (extended), 125
Component function, 28
Component interval, 81
Components,
of alternating tensor, 233
of form, 249
Composite function,
differentiability, 56
class C7, 58
C?, see class C!
Cone, 168
Connected, 38
Connectedness,
of convex set, 39
of interval, 38
Conservative vector field, 323
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Content, 113
Continuity,
of algebraic operations, 28
of composites, 27
of projection, 28
of restriction, 27
Continuous, 27
Continuously differentiable, 50
Convex, 39
Coordinate patch, 196, 201, 346
Coset, 334
Covering, 32
C", see class CT
Cramer’s rule, 21
Cross product, 183, 313
Cross-section, 121
Cube, 30
open, 26
Curl, 264
Cylindrical coordinates, 151

Darboux integral, 89
deRham group, 335

of R® — 0, 341

of R®" —p —q, 344
deRham’s theorem, 354
Derivative, 41, 43

of composite, 56

vs. directional derivative, 44

of inverse, 60
Determinant,

axioms, 15

definition, 234

formula, 234

geometric interpretation, 169

of product, 18

properties, 16

vs. rank, 16

of transpose, 19
df, differential, 253, 255
Df, derivative, 43
Diagonal, 36
Diffeomorphism, 147

of manifolds, 347

preserves rectifiability, 154

primitive, 156
Differentiable, 41-43

vs. continuous, 45
Differentiable homotopy, 325
Differentiable manifold, 346
Differentiably homotopic, 325
Differential,

of k-form, 256

of 0-form, 253
Differential form,

on manifold, 351

on open set in R”, 248

of order 0, 251
Differential operator, 256

as directional derivative, 262

in manifold, 352
Dimension of vector space, 2
Directional derivative, 42

vs. continuity, 44

vs. derivative, 44

in manifold, 349
Distance from point to set, 34
Divergence, 263
Divergence theorem, 319
Dominated by, 139
Dot product, 3
dw, differential, 256
d(x,C), 34
dz;, elementary 1-form, 253
dz;, elementary k-form, 254
Dual basis, 222
Dual space V*, 220
Dual transformation,

of forms, 267

calculation, 269, 273
properties, 268
of tensors, 224

Echelon form, 8

Elementary alternating tensor, 232

as wedge product, 237
Elementary k-form, 249, 254
Elementary k-tensor, 221
Elementary matrix, 11
Elementary 1-form, 249, 253
Elementary permutation, 227
Elementary row operation, 8
Entry of matrix, 4
e-neighborhood,

of point, 26

of set, 34
Exact form, 259
Extended integral, 121

as limit of integrals, 123, 130

as limit of series, 141

vs. ordinary integral, 127, 129, 140

properties, 125
Expansion by cofactors, 23
Ext A, 29



Exterior, 29
Extreme-value theorem, 34
Euclidean metric, 25
Euclidean norm, 4
Euclidean space, 25

Even parametrization, 228

Face of rectangle, 92
Final point of arc, 306
Form, see differential form
Frame, 171
£, 229
f ® g, tensor product, 223
Fubini’s theorem,

for rectangles, 100

for simple regions, 116
Fundamental theorem of calculus, 98
f A g, wedge product, 238

Gauss’ theorem, 319
Gauss-Jordan reduction, 7
Gradient, 48, 263

Gradient theorem, 312
Graph, 97, 114
Gram-Schmidt process, 180
Green’s theorem, 308

Half-ball, 169
Hemiskphere, 192
H*, HE, 200
H*(A), deRham group, 335
Homeomorphism, 345
Homologically trivial, 259
Homotopy,
differentiable, 325
straight-line, 331
Homotopy equivalence, 336
Homotopy equivalence theorem, 336

Identity matrix, 5
Iy, identity matrix, 5
Implicit differentiation, 71, 73
Implicit function theorem, 74
Improper integral, 121
Increasing function, 90
Independent, 2, 10
Induced orientation of boundary, 288,
307, 346

Induced transformation,

of deRham group, 335

of quotient space, 335

of tangent vectors, 246
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Initial point of arc, 306
Inner product, 3
Inner product space, 3
Integrable, 85
extended sense, 121
Integral,
of constant, 87
of max, min, 105
over bounded set, 104
existence, 109, 111
properties, 106
extended, see extended integral
over interval, 89
over rectangle, 85
evaluation, 102
existence, 93
over rectifiable set, 112
over simple region, 116
Integral of form,
on differentiable manifold, 353
on manifold in R", 293-294
on parametrized-manifold, 276
on open set in R*, 276
on 0-manifold, 307
integral of scalar function,
vs. integral of form, 299
over manifold, 210, 212
over parametrized-manifold, 189
over Riemannian manifold, 355
Int A, 29
Interior,
of manifold, 205, 346
of set, 29
Intermediate-value theorem, 38
Invariance of domain, 67
Inverse function,
derivative, 60
differentiability, 65
Inverse function theorem, 69
Inverse matrix, 13
formula, 22
Inversion, in a permutation, 228
Invertible matrix, 13
Inward normal, 318
Isolated point, 27
Isometry, 120, 174
preserves volume, 176
Isomorphism, linear, 6
Iterated integrals, 103

Jacobian matrix, 47
Jordan content, 113
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Jordan-measurable, 113

k-form, see form
Klein bottle, 285

Left half-line, 283
Left-handed, 171
Left inverse, 12
Leibnitz notation, 60
Leibnitz’s rule, 324
Length, 179

of interval, 81

of parametrized-curve, 191

of vector, 4
Lie group, 209
Limit, 28

of composite, 30

vs. continuity, 29
Limit point, 26
Line integral, 278
Line segment, 39
Linear in i*" variable, 220
Linear combination, 2
Linear isomorphism, 6
Linear space, 1

of k-forms, 255
Linear subspace, 2
Linear transformation, 6
Linearity of integral

extended, 125

of form, 295

ordinary, 106

of scalar function, 213
Lipschitz condition, 160
L*(V), k-tensors on V, 220

basis for, 221
Locally bounded, 133
Locally of class C", 199
L, left half-line, 283
Lower integral, 85
Lower sum, 82

Manifold, 200
of dimension 0, 201
without boundary, 196
Matrix, 4
column, 6
elementary, 11
invertible, 13
non-singular, 14
row, 6
singular, 14

Matrix addition, 4
Matrix cofactors, 22
Matrix multiplication, 5
Mayer—Vietoris theorem, 337
Mean-value theorem,
in R, 49
in R™, 59
second-order, 52
Measure zero,
in manifold, 213
in R™, 91
Mesh, 82
Metric, 25
euclidean, 25
Riemannian, 354
sup, 25
Metric space, 25
Minor, 19
Mixed partials, 52, 103
Mobius band, 285
Monotonicity,
of integral, 106
of integral (extended), 125
of volume, 112
Multilinear, 220
Multiplication,
of matrices, 5
by scalar, 1, 4

Natural orientation,

of n-manifold, 286

of tangent space, 298
n-ball, B"(a), 207

as manifold, 208

volume, 168
Neighborhood 26, see also

e-neighborhood

n-manifold, see manifold
n — 1 sphere, 207

as manifold, 208

volume, 218
Non-orientable manifold, 281
Non-singular matrix, 14
Norm, 4

Normal field to n — 1 manifold,

formula, 314
vs. orientation, 285, 312

Odd permutation, 228

QF, linear space of k-forfns, 255, 351

O(n), orthogonal group, 209
Open ball, 26



Open covering, 32
Open cube, 26
Open rectangle, 30
Open set, 26
Opposite orientation,
of manifold, 286, 346
of vector space, 171
Order (of a form), 248
Orientable, 281, 346
Oriented manifold, 281, 346
Orientation,
for boundary, 288
for manifold, 281, 346
for n — 1 manifold, 285, 312
for n-manifold, 286
for 1-manifold, 282
for vector space, 171, 282
for 0-manifold, 307
Orientation-preserving,
diffeomorphism, 281
linear transformation, 172
Orientation-reversing,
diffeomorphism, 281
linear transformation, 172
Orthogonal group, 209
Orthogonal matrix, 173
Orthogonal set, 173
Orthogonal transformation, 174
Orthonormal set, 173
Oscillation, 95
Outward normal, 318
Overlap positively, 281, 346

Parallelopiped, 170

volume, 170, 182
Parametrized-curve, 48, 191
Parametrized-manifold, 188

volume, 188
Parametrized-surface, 191
Partial derivatives, 46

equality of mixed, 52, 103

second-order, 52
Partition,

of interval, 81

of rectangle, 82
Partition of unity, 139

on manifold, 211, 352
Peano curve, 154
Permutation, 227
E’ermutation group, 227
¢:, elementary 1-form, 249
¢1, elementary tensor, 221

Index 365

Poincaré lemma, 331

Polar coordinate transformation, 54,

148

Potential function, 323
Preserves i*? coordinate, 156
Primitive diffeomorphism, 156
Product,

matrix, 5

tensor, see.tensor product

wedge, see wedge product
Projection map, 167

¥1, elementary alternating tensor, 232

¥1, elementary k-form, 249

Pythagorean theorem for volume, 184

Quotient space V/W, 334

Rank of matrix, 7
Rectangle, 29
open, 30
Rectifiable set, 112
Reduced echelon form, 8
Refinement of partition, 82
Restriction,
of coordinate patch, 207
of form, 337
Reverse orientation, see
opposite orientation
Riemann condition, 86
Riemann integral, 89
Riemannian manifold, 355
Riemannian metric, 354
Right-hand rule, 172
Right-handed, 171
Right inverse, 12
R",
as metric space, 25
as vector space, 2
Row index, 4
Row matrix, 6
Row operations, 8
Row rank, 7
Row space, 7

Scalar field, 48, 251

sgn o, 228

EU]’ 184

T, 222

Sign of permutation, 228
Simple region, 114
Singular matrix, 14

Size of matrix, 4
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Sk, symmetric group, 227
Skew-symmetric, 265
5™~1(a), see n — 1 sphere
Solid torus, 151
as manifold, 208
volume, 151
Span, 2, 10
Sphere, see n — 1 sphere
Spherical coordinate transformation,
55, 150
Stairstep form, 8
Standard basis, 3
Star-convex, 330
Stokes’ theorem,
for arc, 306
for differentiable manifold, 353
for k-manifold in R™, 303
for 1-manifold, 308
for surface in R?, 319
Straight-line homotopy, 331
Subinterval determined by partition, 82
Subrectangle determined by partition,
82
Subspace,
linear, 2
of metric space, 25
Substitution rule, 144
Sup metric, 25
Sup norm,
for vectors, 4
for matrices, 5
Support, 139
Symmetric group, 227
Symmetric set, 168
Symmetric tensor, 229

Tangent bundle, 248
Tangent space,
to manifold, 247, 349
to R™, 245
Tangent vector,
to manifold, 247, 348, 351
to R™, 245
Tangent vector field,
to manifold, 248
to R™, 247
Tensor, 220
Tensor field,
on manifold, 249
in R™, 248
Tensor product, 223
properties, 224

Topological property, 27
Torus, 151

area, 217

as manifold, 208
Total volume of rectangles, 91
To(M), see tangent space
T (M), see tangent bundle
Transition function, 203, 346
Transpose, 9
Triangle, 193
Triangle inequality, 4

T*, see dual transformation of tensors

Uniform continuity, 36
Upper half-space, 200
Upper integral, 85
Upper sum, 82

Usual basis for tangent space, 249

Vector, 1
Vector addition, 1
Vector space, 1
Velocity vector, 48, 245, 349
Volume,
of bounded set, 112
of cone, 168
of manifold, 212
of M x N, 218
of n-ball, 168
of n-sphere, 218
of parallelopiped, 182
of parametrized-manifold, 188
of rectangle, 81
of Riemannian manifold, 355
of solid torus, 151
Volume form, 300
for Riemannian manifold, 355
V*, dual space, 220
V/W, quotient space, 334
V(X), volume function, 181

Wedge product,
definition, 238
properties, 237

Width, 81

X1, submatrix, 184

Y,, see parametrized-manifold
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